Câu hỏi:

04/11/2022 309

Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình \[\left\{ {\begin{array}{*{20}{c}}{x + y - 2 \le 0}\\{2x - 3y + 2 > 0}\end{array}} \right.\].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Lần lượt thay các cặp số vào các bất phương trình của hệ bất phương trình đã cho, cặp số nào không thỏa mãn hệ thì cặp số đó không là nghiệm của hệ đã cho.

+) Với cặp số (0; 0), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{0 + 0 - 2 \le 0}\\{2.0 - 3.0 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\2 > 0\end{array} \right.\) (luôn đúng). Vậy (0; 0) là nghiệm của hệ bất phương trình đã cho.

+) Với cặp số (1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{1 + 1 - 2 \le 0}\\{2.1 - 3.1 + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}0 \le 0\\1 > 0\end{array} \right.\] (luôn đúng). Vậy (1; 1) là nghiệm của hệ bất phương trình đã cho.

+) Với cặp số (– 1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + 1 - 2 \le 0}\\{2.\left( { - 1} \right) - 3.1 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\ - 3 > 0\end{array} \right.\) (vô lý). Vậy (– 1; 1) không là nghiệm của hệ bất phương trình đã cho.

+) Với cặp số (– 1; – 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + \left( { - 1} \right) - 2 \le 0}\\{2.\left( { - 1} \right) - 3.\left( { - 1} \right) + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 4 \le 0\\3 > 0\end{array} \right.\] (luôn đúng). Vậy (– 1; – 1) là nghiệm của hệ bất phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).

Xem đáp án » 04/11/2022 15,542

Câu 2:

Mệnh đề nào sau đây đúng?

Xem đáp án » 04/11/2022 14,725

Câu 3:

Cho tam giác đều ABC có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho \(BN = \frac{a}{3},CM = \frac{{2a}}{3},AP = x\left( {0 < x < a} \right)\). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.

Xem đáp án » 13/07/2024 12,555

Câu 4:

Cho G là trọng tâm của tam giác ABC và điểm M bất kỳ. Đẳng thức nào sau đây đúng?

Xem đáp án » 04/11/2022 11,301

Câu 5:

Cho các tập hợp A = {x ℝ| – 5 ≤ x < 1} và B = {x ℝ| – 3 < x ≤ 3}. Tìm tập hợp A B.

Xem đáp án » 04/11/2022 9,488

Câu 6:

Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = - 2\overrightarrow i + \overrightarrow j \). Tìm tọa độ của vectơ \(\overrightarrow u \).

Xem đáp án » 04/11/2022 9,416

Câu 7:

Cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) khác vectơ-không. Khẳng định nào sau đây là đúng?

Xem đáp án » 04/11/2022 8,535

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store