Câu hỏi:

04/11/2022 437

Trong các cặp số sau, cặp nào không là nghiệm của hệ bất phương trình \[\left\{ {\begin{array}{*{20}{c}}{x + y - 2 \le 0}\\{2x - 3y + 2 > 0}\end{array}} \right.\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Lần lượt thay các cặp số vào các bất phương trình của hệ bất phương trình đã cho, cặp số nào không thỏa mãn hệ thì cặp số đó không là nghiệm của hệ đã cho.

+) Với cặp số (0; 0), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{0 + 0 - 2 \le 0}\\{2.0 - 3.0 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\2 > 0\end{array} \right.\) (luôn đúng). Vậy (0; 0) là nghiệm của hệ bất phương trình đã cho.

+) Với cặp số (1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{1 + 1 - 2 \le 0}\\{2.1 - 3.1 + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}0 \le 0\\1 > 0\end{array} \right.\] (luôn đúng). Vậy (1; 1) là nghiệm của hệ bất phương trình đã cho.

+) Với cặp số (– 1; 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + 1 - 2 \le 0}\\{2.\left( { - 1} \right) - 3.1 + 2 > 0}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l} - 2 \le 0\\ - 3 > 0\end{array} \right.\) (vô lý). Vậy (– 1; 1) không là nghiệm của hệ bất phương trình đã cho.

+) Với cặp số (– 1; – 1), thay vào hệ bất phương trình ta được \[\left\{ {\begin{array}{*{20}{c}}{\left( { - 1} \right) + \left( { - 1} \right) - 2 \le 0}\\{2.\left( { - 1} \right) - 3.\left( { - 1} \right) + 2 > 0}\end{array}} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 4 \le 0\\3 > 0\end{array} \right.\] (luôn đúng). Vậy (– 1; – 1) là nghiệm của hệ bất phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính vecto BC + vecto BA (ảnh 1)

Do ABCD là hình chữ nhật nên ABCD cũng là hình bình hành, áp dụng quy tắc hình bình hành ta có: \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).

Suy ra, \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).

Theo định lí Pythagore trong tam giác vuông ABD, ta có:

BD2 = AB2 + AD2 = 42 + 32 = 25, suy ra BD = 5 (cm).

Vậy \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right| = \left| {\overrightarrow {BD} } \right| = BD\)= 5 cm.

Câu 2

Lời giải

Đáp án đúng là: C

Vì G là trọng tâm của tam giác ABC nên ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).

Với điểm M bất kỳ, theo quy tắc ba điểm ta có:

\(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)\)

                             \( = 3\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {MG} + \overrightarrow 0 = 3\overrightarrow {MG} \).

Vậy \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP