Câu hỏi:
06/11/2022 6,920Phương trình đường thẳng đi qua điểm A(–2; 0) và tạo với đường thẳng d: x + 3y – 3 = 0 một góc 45° là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi ∆ là đường thẳng cần tìm.
Ta có ∆ đi qua điểm A(–2; 0) và có vectơ pháp tuyến \({\vec n_\Delta } = \left( {A;B} \right)\).
Suy ra phương trình tổng quát của ∆ có dạng: A(x + 2) + B(y – 0) = 0.
⇔ Ax + By + 2A = 0.
Đường thẳng d có vectơ pháp tuyến \({\vec n_d} = \left( {1;3} \right)\).
Theo đề, ta có góc giữa hai đường thẳng ∆ và d bằng 45°.
\( \Leftrightarrow \cos 45^\circ = \frac{{\left| {1.A + 3.B} \right|}}{{\sqrt {{1^2} + {3^2}} .\sqrt {{A^2} + {B^2}} }}\)
\( \Leftrightarrow \left| {A + 3B} \right| = \sqrt {5\left( {{A^2} + {B^2}} \right)} \)
Bình phương hai vế của phương trình trên, ta được: (A + 3B)2 = 5(A2 + B2)
⇔ A2 + 6AB + 9B2 = 5A2 + 5B2
⇔ 4A2 – 6AB – 4B2 = 0 (1)
Trường hợp 1: B = 0.
Ta suy ra 4A2 = 0. Khi đó A = 0.
Vì vậy ta loại trường hợp 1 vì A và B không thể đồng thời bằng 0.
Trường hợp 2: B ≠ 0.
Ta chia 2 vế của phương trình (1) cho B2, ta được: \(4{\left( {\frac{A}{B}} \right)^2} - 6.\left( {\frac{A}{B}} \right) - 4 = 0\).
\( \Leftrightarrow \left[ \begin{array}{l}\frac{A}{B} = 2\\\frac{A}{B} = - \frac{1}{2}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}A = 2B\\ - 2A = B\end{array} \right.\)
Với A = 2B, ta chọn B = 1. Suy ra A = 2.
Khi đó ta có phương trình ∆: 2x + y + 4 = 0.
Với B = –2A, ta chọn A = 1. Suy ra B = –2.
Khi đó ta có phương trình ∆: x – 2y + 2 = 0.
Vậy ta có 2 đường thẳng ∆ thỏa mãn yêu cầu bài toán có phương trình là 2x + y + 4 = 0 hoặc x – 2y + 2 = 0.
Do đó ta chọn phương án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
⦁ Đường thẳng d1 có vectơ pháp tuyến \({\vec n_1} = \left( {2; - 3} \right)\).
⦁ Đường thẳng d2 có vectơ chỉ phương \({\vec u_2} = \left( { - 3; - 4m} \right)\).
Suy ra đường thẳng d2 có vectơ pháp tuyến \({\vec n_2} = \left( {4m; - 3} \right)\).
Vì d1 ⊥ d2 nên \({\vec n_1} \bot {\vec n_2}\).
\( \Leftrightarrow {\vec n_1}.{\vec n_2} = 0\)
⇔ 2.4m – 3.(–3) = 0
⇔ 8m + 9 = 0
\( \Leftrightarrow m = - \frac{9}{8}\).
Vậy \(m = - \frac{9}{8}\) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là:
Ô tô A di chuyển theo hướng có vectơ chỉ phương \({\vec u_A} = \left( { - 2;1} \right)\).
Ô tô B di chuyển theo hướng có vectơ chỉ phương \({\vec u_B} = \left( {1;2} \right)\).
Gọi α là góc giữa hai đường đi của hai ô tô A và B.
Ta có: \[\cos \alpha = \left| {\cos \left( {{{\vec u}_A};{{\vec u}_B}} \right)} \right| = \frac{{\left| {{{\vec u}_A}.{{\vec u}_B}} \right|}}{{\left| {{{\vec u}_A}} \right|.\left| {{{\vec u}_B}} \right|}}\]
\[ = \frac{{\left| { - 2.1 + 1.2} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2} + {2^2}} }} = 0\].
Suy ra α = 90°.
Vậy góc giữa hai đường đi của hai ô tô A và B bằng 90°.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận