Câu hỏi:
06/11/2022 1,032Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(2; –2) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có 2a gấp đôi 2b. Suy ra 2a = 4b.
Khi đó a = 2b.
Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a > 0, b > 0.
Ta có M(2; –2) ∈ (E).
Suy ra \(\frac{{{2^2}}}{{{a^2}}} - \frac{{{{\left( { - 2} \right)}^2}}}{{{b^2}}} = 1\)
⇔ 4b2 – 4a2 = a2b2
⇔ 4b2 – 4.(2b)2 = (2b)2.b2
⇔ 4b4 – 12b2 = 0
⇔ b2 = 0 hoặc b2 = 3
⇔ b = 0 hoặc \(b = \sqrt 3 \)
Vì b > 0 nên ta loại b = 0.
Với \[b = \sqrt 3 \], ta có \(a = 2\sqrt 3 \).
Vậy phương trình chính tắc của (H): \(\frac{{{x^2}}}{{12}} - \frac{{{y^2}}}{3} = 1\).
Do đó ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình chính tắc của elip có một tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) và đi qua điểm \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là:
Câu 2:
Cho hypebol (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) và đường thẳng ∆: x + y = 3. Tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ bằng giá trị nào sau đây?
Câu 3:
Tọa độ điểm A thuộc parabol (P): y2 = 32x và đường thẳng ∆: 2x – 3y + 4 = 0 là:
Câu 4:
Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
về câu hỏi!