Câu hỏi:

06/11/2022 251

Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Tọa độ giao điểm của đường thẳng d và elip (E) thỏa mãn hệ phương trình: \[\left\{ \begin{array}{l}x = - 4\\\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\\frac{{{{\left( { - 4} \right)}^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\{y^2} = \frac{{81}}{{25}}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = \pm \frac{9}{5}\end{array} \right.\)

Suy ra tọa độ \(M\left( { - 4; - \frac{9}{5}} \right),\,\,N\left( { - 4;\frac{9}{5}} \right)\).

Khi đó \(MN = \sqrt {{{\left( { - 4 + 4} \right)}^2} + {{\left( {\frac{9}{5} + \frac{9}{5}} \right)}^2}} = \frac{{18}}{5}\).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình chính tắc của elip có một tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) và đi qua điểm \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là:

Xem đáp án » 06/11/2022 21,745

Câu 2:

Cho hypebol (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) và đường thẳng ∆: x + y = 3. Tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ bằng giá trị nào sau đây?

Xem đáp án » 06/11/2022 3,583

Câu 3:

Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(2; –2) là:

Xem đáp án » 06/11/2022 1,032

Câu 4:

Tọa độ điểm A thuộc parabol (P): y2 = 32x và đường thẳng ∆: 2x – 3y + 4 = 0 là:

Xem đáp án » 06/11/2022 499

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store