5 câu Trắc nghiệm Toán 10 Cánh diều Ba đường conic (Phần 2) có đáp án (Vận dụng)
21 người thi tuần này 4.6 1.9 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\). Suy ra \(c = \sqrt 3 \).
Khi đó c2 = 3.
Vì vậy a2 – b2 = 3.
Do đó a2 = b2 + 3.
Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0).
Ta có \(M\left( {1;\frac{{\sqrt 3 }}{2}} \right) \in \left( E \right)\).
Suy ra \(\frac{{{1^2}}}{{{a^2}}} + \frac{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}{{{b^2}}} = 1\)
\( \Leftrightarrow \frac{1}{{{a^2}}} + \frac{3}{{4{b^2}}} = 1\)
⇔ 4b2 + 3a2 = 4a2b2
⇔ 4b2 + 3(b2 + 3) = 4b2(b2 + 3)
⇔ 4b4 + 5b2 – 9 = 0
⇔ b2 = 1 hoặc \({b^2} = - \frac{9}{4}\) (vô lí)
⇔ b = 1.
Với b = 1, ta có a2 = 12 + 3 = 4.
Vậy phương trình chính tắc của (E): \(\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\).
Do đó ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 9\end{array} \right.\)
Ta có c2 = a2 + b2 = 16 + 9 = 25.
Suy ra c = 5.
Khi đó hai tiêu điểm của (H) là F1(–5; 0), F2(5; 0).
Ta có ∆: x + y = 3 ⇔ x + y – 3 = 0.
Ta có \(d\left( {{F_1},\Delta } \right) = \frac{{\left| { - 5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2 \) và \[d\left( {{F_2},\Delta } \right) = \frac{{\left| {5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \].
Khi đó tích các khoảng cách từ hai tiêu điểm của (H) đến ∆ là: \(4\sqrt 2 .\sqrt 2 = 8\).
Vậy ta chọn phương án B.
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có 2a gấp đôi 2b. Suy ra 2a = 4b.
Khi đó a = 2b.
Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a > 0, b > 0.
Ta có M(2; –2) ∈ (E).
Suy ra \(\frac{{{2^2}}}{{{a^2}}} - \frac{{{{\left( { - 2} \right)}^2}}}{{{b^2}}} = 1\)
⇔ 4b2 – 4a2 = a2b2
⇔ 4b2 – 4.(2b)2 = (2b)2.b2
⇔ 4b4 – 12b2 = 0
⇔ b2 = 0 hoặc b2 = 3
⇔ b = 0 hoặc \(b = \sqrt 3 \)
Vì b > 0 nên ta loại b = 0.
Với \[b = \sqrt 3 \], ta có \(a = 2\sqrt 3 \).
Vậy phương trình chính tắc của (H): \(\frac{{{x^2}}}{{12}} - \frac{{{y^2}}}{3} = 1\).
Do đó ta chọn phương án C.
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Tọa độ giao điểm của đường thẳng d và elip (E) thỏa mãn hệ phương trình: \[\left\{ \begin{array}{l}x = - 4\\\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\\frac{{{{\left( { - 4} \right)}^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\{y^2} = \frac{{81}}{{25}}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = \pm \frac{9}{5}\end{array} \right.\)
Suy ra tọa độ \(M\left( { - 4; - \frac{9}{5}} \right),\,\,N\left( { - 4;\frac{9}{5}} \right)\).
Khi đó \(MN = \sqrt {{{\left( { - 4 + 4} \right)}^2} + {{\left( {\frac{9}{5} + \frac{9}{5}} \right)}^2}} = \frac{{18}}{5}\).
Vậy ta chọn phương án C.
Câu 5
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Tọa độ giao điểm của (P) và ∆ thỏa hệ phương trình: \(\left\{ \begin{array}{l}{y^2} = 32x\\2x - 3y + 4 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32x\\2x = 3y - 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32x\\x = \frac{3}{2}y - 2\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32.\left( {\frac{3}{2}y - 2} \right) = 48y - 64\\x = \frac{3}{2}y - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{y^2} - 48y + 64 = 0\\x = \frac{3}{2}y - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 24 \pm 16\sqrt 2 \\x = \frac{3}{2}y - 2\end{array} \right.\]
Với \(y = 24 + 16\sqrt 2 \), ta có \(x = \frac{3}{2}.\left( {24 + 16\sqrt 2 } \right) - 2 = 34 + 24\sqrt 2 \)
Suy ra \(A\left( {34 + 24\sqrt 2 ;24 + 16\sqrt 2 } \right)\).
Với \(y = 24 - 16\sqrt 2 \), ta có \(x = \frac{3}{2}.\left( {24 - 16\sqrt 2 } \right) - 2 = 34 - 24\sqrt 2 \)
Suy ra \(A\left( {34 - 24\sqrt 2 ;24 - 16\sqrt 2 } \right)\).
Vậy \(A\left( {34 + 24\sqrt 2 ;24 + 16\sqrt 2 } \right)\) hoặc \(A\left( {34 - 24\sqrt 2 ;24 - 16\sqrt 2 } \right)\) là tọa độ A cần tìm.
Do đó ta chọn phương án A.