Câu hỏi:
06/11/2022 340Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Đường thẳng ∆ có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\).
Suy ra đường thẳng ∆ nhận \(\vec u = \left( {5; - 2} \right)\) làm vectơ chỉ phương.
Đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ chỉ phương \(\vec u = \left( {5; - 2} \right)\).
Suy ra phương trình tham số của ∆: \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 3 - 2t\end{array} \right.\)
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của parabol (P) có dạng: y = 2px (p > 0).
Ta có 2p = 5. Suy ra \(p = \frac{5}{2}\).
Khi đó \(\frac{p}{2} = \frac{5}{4}\).
Vậy tiêu điểm của parabol (P) là \(F\left( {\frac{5}{4};0} \right)\).
Do đó ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
⦁ Hoành độ của \(\overrightarrow {BC} \) là: xC – xB = 5 – (–1) = 6;
⦁ Tung độ của \(\overrightarrow {BC} \) là: yC – yB = 2 – 3 = –1.
Suy ra \(\overrightarrow {BC} = \left( {6; - 1} \right)\).
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.