Câu hỏi:

05/12/2022 1,554 Lưu

Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a,SAABC, góc giữa SC và mặt phẳng (ABC) bằng 300. Tính khoảng cách giữa hai đường thẳng SB và AC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc (ABC) (ảnh 1)

Do SAABC nên góc giữa SC và mặt phẳng (ABC) là góc SCA^. Suy ra SCA^=300.

Trong tam giác SCA vuông tại A có tanSCA^=SAACSA=AC.tanSCA^=a.tan300=a33.

Lấy điểm D sao cho ABCD là hình bình hành.

Khi đó dSB,AC=dAC,SBD=dA,SBD.

Ta có AB=BD=ADΔABD đều cạnh a.

Gọi M là trung điểm BD Suy ra AMBD AM=a32.

Trong ΔSAM kẻ AHSM với HSM.

Do BDAMBDSABDSAMBDAH.

Suy ra AHSAMdA,SBD=AH.

Trong ΔSAM vuông tại A ta có:

     1AH2=1AM2+1SA21AH2=43a2+93a21AH2=133a2AH=a313.

Vậy dSB,AC=a313=a3913.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(3;0;0), B(-3;0;0) và C(0;5;1). (ảnh 1)

Gọi C10;5;0 là hình chiếu của C trên mặt phẳng (Oxy). Khi đó ta có:

MC=CC12+C1M2=1+C1M2*

Vậy MC nhỏ nhất khi và chỉ khi MC1 nhỏ nhất.

Xét trên mặt phẳng tọa độ Oxy với A3;0,B3;0,C10;5

Theo giả thiết MA+MB=10 nên tập hợp điểm M là đường elip có phương trình: x225+y216=1.

Đặt x=5cosαy=4sinα,0α2π.

M5cosα;4sinα,

MC1=52cos2α+4sinα52=2525sin2α+16sin2α40sinα+25

        =5049sinα9sin2α=1+401sinα+91sin2α1

Suy ra C1Mmin=1sinα=1, suy ra M0;4.

Vậy CMmin=12+12=2 với M0;4;0.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP