Câu hỏi:

05/12/2022 2,474 Lưu

Cho hàm bậc ba y=fx có đồ thị như hình vẽ. Hàm số hx=fsinx1 có bao nhiêu điểm cực trị trên đoạn 0;2π.

Cho hàm bậc ba y= f(x)  có đồ thị như hình vẽ. Hàm số h(x)= |f(sin x)-1| (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D.

Xét hàm số gx=fsinx1.

fsinx1=0fsinx=1sinx=1sinx=α0<α<12

Phương trình sinx=1 cho một nghiệm x=π2 thuộc đoạn 0;2π.

Phương trình sinx=α cho 2 nghiệm thuộc đoạn 0;2π

Ta tìm số cực trị của hàm số gx=fsinx1.

Ta có: g'x=cosxf'sinx,g'x=0cosxf'sinx=0cosx=0f'sinx=0

cosx=0sinx=12sinx=2lx=π2+kπx=π6+k2πx=5π6+k2π

x0;2π, suy ra: xπ6;π2;5π6;3π2.

Hàm số gx=fsinx1 có một điểm cực trị x=π2 thuộc trục hoành.

Vậy hàm số hx=fsinx1 có 6 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(3;0;0), B(-3;0;0) và C(0;5;1). (ảnh 1)

Gọi C10;5;0 là hình chiếu của C trên mặt phẳng (Oxy). Khi đó ta có:

MC=CC12+C1M2=1+C1M2*

Vậy MC nhỏ nhất khi và chỉ khi MC1 nhỏ nhất.

Xét trên mặt phẳng tọa độ Oxy với A3;0,B3;0,C10;5

Theo giả thiết MA+MB=10 nên tập hợp điểm M là đường elip có phương trình: x225+y216=1.

Đặt x=5cosαy=4sinα,0α2π.

M5cosα;4sinα,

MC1=52cos2α+4sinα52=2525sin2α+16sin2α40sinα+25

        =5049sinα9sin2α=1+401sinα+91sin2α1

Suy ra C1Mmin=1sinα=1, suy ra M0;4.

Vậy CMmin=12+12=2 với M0;4;0.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP