Cho tam giác ABC. Chứng minh rằng nếu đường cao AH cũng là đường phân giác thì tam giác ABC cân tại A.
Câu hỏi trong đề: Giải VTH Toán 7 CTST Bài 10. Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:
AH là đường cao của tam giác ABC nên .
AH là đường phân giác nên .
Xét tam giác AHB và tam giác AHC.
.
.
Cạnh chung AH.
Vậy tam giác AHB bằng tam giác AHC theo trường hợp g.c.g. Suy ra AB = AC hay tam giác ABC cân tại A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kéo dài AO cắt BC tại M.
Xét tam giác ACE và tam giác ABF.
AC = AB ( do tam giác ABC cân tại A)
AE = AF (gt)
Góc A chung
Vậy tam giác ACE bằng tam giác ABF theo trường hợp c.g.c. Suy ra CE = BF.
Xét tam giác ECB và tam giác FBC
( do tam giác ABC cân tại A)
CE = BF
Cạnh chung BC
Vậy tam giác ECB bằng tam giác FBC theo trường hơpk c.g.c. Suy ra hay nên tam giác OBC cân tại O. Ta có OB = OC hay O nằm trên đường trung trực của BC (1).
AB = AC ( do tam giác ABC cân tại A) nên A nằm trên đường trung trực của BC. (2)
Từ (1) và (2) suy ra AO là đường trung trực của BC.
Lời giải
Từ G hạ đường vuông góc GK xuống AB.
Do PA = PB nên 2S∆APG = AP.GK = BP.GK = 2S∆BGP.
Từ A hạ đường vuông góc AL xuống CP.
Do GC = 2 GP nên 2S∆AGP = PG. AL = GC.AL = 2S∆AGC.
Vậy 2S∆APG = 2S∆BGP = S∆AGC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.