Câu hỏi:
12/07/2024 854Cho tam giác nhọn ABC có AM, BN, CP là ba trung tuyến và G là trọng tâm của tam giác. Chứng minh 2S∆APG = 2S∆BGP = S∆AGC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Từ G hạ đường vuông góc GK xuống AB.
Do PA = PB nên 2S∆APG = AP.GK = BP.GK = 2S∆BGP.
Từ A hạ đường vuông góc AL xuống CP.
Do GC = 2 GP nên 2S∆AGP = PG. AL = GC.AL = 2S∆AGC.
Vậy 2S∆APG = 2S∆BGP = S∆AGC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A. Trên AB và AC lần lượt lấy hai điểm E và F sao cho AE = AF. Hai đoạn thẳng BF và CE cắt nhau tại O, chứng minh AO là đường trung trực của BC.
Câu 2:
Câu 3:
Cho ABC là tam giác nhọn có M là trung điểm của BC, lấy N thuộc AB, P thuộc AC sao cho MP song song với AB và MN song song với AC. Chứng minh ba đường cao của tam giác MNP cũng là ba đường trung trực của tam giác MNP.
Câu 5:
Cho tam giác ABC có một góc bằng 89 độ. Chỉ ra hai số đo của góc B và góc C sao cho góc A không phải là góc lớn nhất.
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 01
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ thuận (có lời giải)
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ nghịch (có lời giải)
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 02
Đề kiểm tra giữa học kì 2 Toán lớp 7 CTST - Đề 01 có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận