Câu hỏi:

12/07/2024 625

Cho tam giác nhọn ABC có AM, BN, CP là ba trung tuyến và G là trọng tâm của tam giác. Chứng minh 2SAPG = 2SBGP = SAGC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Từ G hạ đường vuông góc GK xuống AB.

Do PA = PB nên 2SAPG = AP.GK = BP.GK = 2SBGP.

Từ A hạ đường vuông góc AL xuống CP.

Do GC = 2 GP nên 2S∆AGP = PG. AL = 12GC.AL = 2S∆AGC.

Vậy 2SAPG = 2SBGP = SAGC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A. Trên AB và AC lần lượt lấy hai điểm E và F sao cho AE = AF. Hai đoạn thẳng BF và CE cắt nhau tại O, chứng minh AO là đường trung trực của BC.

Xem đáp án » 13/07/2024 1,307

Câu 2:

Cho tam giác ABC. Chứng minh rằng nếu đường cao AH cũng là đường phân giác thì tam giác ABC cân tại A.

Xem đáp án » 12/07/2024 833

Câu 3:

Cho ABC là tam giác nhọn có M là trung điểm của BC, lấy N thuộc AB, P thuộc AC sao cho MP song song với AB và MN song song với AC. Chứng minh ba đường cao của tam giác MNP cũng là ba đường trung trực của tam giác MNP.

Xem đáp án » 12/07/2024 622

Câu 4:

Khẳng định nào sau đây là đúng?

Xem đáp án » 12/07/2024 436

Câu 5:

Cho tam giác ABC có một góc bằng 89 độ. Chỉ ra hai số đo của góc B và góc C sao cho góc A không phải là góc lớn nhất.

Xem đáp án » 12/07/2024 391

Câu 6:

Cho tam giác nhọn ABC có AM, BN, CP là ba trung tuyến và G là trọng tâm của tam giác.

Chứng minh diện tích ba tam giác GAB, tam giác GBC và tam giác GAC bằng nhau.

Xem đáp án » 12/07/2024 345

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store