Câu hỏi:

12/07/2024 658

Cho tam giác nhọn ABC có AM, BN, CP là ba trung tuyến và G là trọng tâm của tam giác. Chứng minh 2SAPG = 2SBGP = SAGC.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Từ G hạ đường vuông góc GK xuống AB.

Do PA = PB nên 2SAPG = AP.GK = BP.GK = 2SBGP.

Từ A hạ đường vuông góc AL xuống CP.

Do GC = 2 GP nên 2S∆AGP = PG. AL = 12GC.AL = 2S∆AGC.

Vậy 2SAPG = 2SBGP = SAGC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A. Trên AB và AC lần lượt lấy hai điểm E và F sao cho AE = AF. Hai đoạn thẳng BF và CE cắt nhau tại O, chứng minh AO là đường trung trực của BC.

Xem đáp án » 13/07/2024 1,398

Câu 2:

Cho tam giác ABC. Chứng minh rằng nếu đường cao AH cũng là đường phân giác thì tam giác ABC cân tại A.

Xem đáp án » 12/07/2024 966

Câu 3:

Cho ABC là tam giác nhọn có M là trung điểm của BC, lấy N thuộc AB, P thuộc AC sao cho MP song song với AB và MN song song với AC. Chứng minh ba đường cao của tam giác MNP cũng là ba đường trung trực của tam giác MNP.

Xem đáp án » 12/07/2024 649

Câu 4:

Khẳng định nào sau đây là đúng?

Xem đáp án » 12/07/2024 463

Câu 5:

Cho tam giác ABC có một góc bằng 89 độ. Chỉ ra hai số đo của góc B và góc C sao cho góc A không phải là góc lớn nhất.

Xem đáp án » 12/07/2024 414

Câu 6:

Cho tam giác nhọn ABC có AM, BN, CP là ba trung tuyến và G là trọng tâm của tam giác.

Chứng minh diện tích ba tam giác GAB, tam giác GBC và tam giác GAC bằng nhau.

Xem đáp án » 12/07/2024 356

Bình luận


Bình luận