Câu hỏi:

11/12/2022 13,171

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a  và có SA = SB = SC = a . Góc giữa hai mặt phẳng (SBD)  và (ABCD)  bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a  và có SA = SB = SC = a . Góc giữa hai mặt phẳng (SBD)  và (ABCD)  bằng (ảnh 1)

Gọi H là chân đường vuông góc của S xuống mặt phẳng đáy (ABCD) (SHABCD)

SA=SB=SC=a => các hình chiếu: HA=HB=HC => H là tâm đường tròn (ABC)

Mà tam giác ABC cân tại B (vì BA = BC = a ) => tâm H  phải nằm trên BH => SHSBD

Vậy có SHABCDSHSBDSBDABCD nên góc SBD,ABCD=90o

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy và SA = a. Góc giữa hai mặt phẳng (SBC) và (SCD) bằng bao nhiêu? (ảnh 1)

Ta có: SCBD (vì BDAC,BDSA)

Trong mặt phẳng (SAC), kẻ OISC thì ta có SC(BID)

Khi đó (SBC),(SCD)^=BID^

Trong tam giác SAC , kẻ đường cao AH  thì AH=a23

Mà O là trung điểm AC và OI // AH nên OI=a6

Tam giác IOD vuông tại O có tanOID^=3OID^=600

Vậy hai mặt phẳng (SBC) và (SCD) hợp với nhau một góc  60o

Lời giải

Chọn B

Cho hình chóp tứ giác đều có cạnh đáy bằng a căn bậc hai 2 và chiều cao bằng a căn bậc hai hai/2. Tính số đo của góc giữa mặt bên và mặt đáy. (ảnh 1)

Giả sử hình chóp đã cho là S.ABCD có đường cao SH

Ta có: ABCDSCD=CD

Gọi M là trung điểm của CD => dễ chứng minh được SMCD và HMCD

ABCD,SCD=HM,SM=SMH^

Mặt khác: HM=12AD=a22

Áp dụng hệ thức lượng trong tam giác SHM vuông tại H, ta có :

tanSMH^=SHHM=a22.2a2=1SMH^=45°

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình chóp S.ABCD có đáy ABCD là hình vuông có tâm O và SAABCD. Khẳng định nào sau đây sai ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay