Câu hỏi:

14/12/2022 2,882 Lưu

Cho hàm số bậc hai f(x) = 2x2 – 8x + 7. Phát biểu nào sau đây là đúng?

A. Hàm số đồng biến trên khoảng (– ∞; 2), nghịch biến trên khoảng (2; + ∞);
B. Hàm số đồng biến trên khoảng (– ∞; 4), nghịch biến trên khoảng (4; + ∞);
C. Hàm số đồng biến trên khoảng (4; + ∞), nghịch biến trên khoảng (– ∞; 4);
D. Hàm số đồng biến trên khoảng (2; + ∞), nghịch biến trên khoảng (– ∞; 2).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \( - \frac{b}{{2a}} = - \frac{{ - 8}}{{2.2}} = 2\)

Vì hệ số a = 2 > 0 nên hàm số f(x) đồng biến trên khoảng (2; + ∞), nghịch biến trên khoảng (– ∞; 2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. x + y – 3 = 0;
B. y = 2x + 2;
C. \(\frac{{x - 4}}{6} = \frac{{y - 1}}{{ - 4}}\);
D. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 - 2t\end{array} \right.\).

Lời giải

Đáp án đúng là: D

Bốn phương trình đã cho đều là dạng của phương trình đường thẳng.

Thay lần lượt toa độ của A, B vào từng phương trình ta thấy tọa độ của A và B đều thỏa mãn phương trình ở đáp án D.

Lời giải

Đáp án đúng là: B

Bình phương hai vế của phương trình \(\sqrt {4 - 3{x^2}} = 2x - 1\) ta được

4 – 3x2 = 4x2 – 4x + 1.

Sau khi thu gọn ta được 7x2 – 4x – 3 = 0. Từ đó tìm được x = 1 hoặc \(x = - \frac{3}{7}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có x = 1 thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là x = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 2x2 + y2 – 6x – 6y – 8 = 0;
B. x2 + 2y2 – 4x – 8y – 12 = 0;
C. x2 + y2 – 2x – 8y + 18 = 0;
D. 2x2 + 2y2 – 4x + 6y – 12 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP