Câu hỏi:

14/12/2022 2,762 Lưu

Giá trị nào sau đây là một nghiệm của phương trình\(\sqrt {3{x^2} - 6x + 1} = \sqrt {{x^2} - 3} \)?

A. 2;
B. 4;
C. 12;
D. 20.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cách 1. Thay lần lượt các giá trị ở từng đáp án vào cho đến khi tìm được giá trị thỏa mãn.

Cách 2. Giải phương trình

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt {{x^2} - 3} \) ta được

3x2 – 6x + 1 = x2 – 3.

Rút gọn ta được x2 – 3x + 2 = 0. Từ đó ta tìm được x = 1 hoặc x = 2.

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có x = 2 thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là x = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. x + y – 3 = 0;
B. y = 2x + 2;
C. \(\frac{{x - 4}}{6} = \frac{{y - 1}}{{ - 4}}\);
D. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 - 2t\end{array} \right.\).

Lời giải

Đáp án đúng là: D

Bốn phương trình đã cho đều là dạng của phương trình đường thẳng.

Thay lần lượt toa độ của A, B vào từng phương trình ta thấy tọa độ của A và B đều thỏa mãn phương trình ở đáp án D.

Lời giải

Đáp án đúng là: B

Bình phương hai vế của phương trình \(\sqrt {4 - 3{x^2}} = 2x - 1\) ta được

4 – 3x2 = 4x2 – 4x + 1.

Sau khi thu gọn ta được 7x2 – 4x – 3 = 0. Từ đó tìm được x = 1 hoặc \(x = - \frac{3}{7}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có x = 1 thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là x = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 2x2 + y2 – 6x – 6y – 8 = 0;
B. x2 + 2y2 – 4x – 8y – 12 = 0;
C. x2 + y2 – 2x – 8y + 18 = 0;
D. 2x2 + 2y2 – 4x + 6y – 12 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP