Câu hỏi:

16/12/2022 682

Cho phương trình \(\sqrt { - {x^2} + 4x - 3} = \sqrt {2m + 3x - {x^2}} \) (1). Để phương trình (1) có nghiệm thì m [a; b]. Giá trị a2 + b2 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có:

\(\sqrt { - {x^2} + 4x - 3} = \sqrt {2m + 3x - {x^2}} \)\( \Leftrightarrow \left\{ \begin{array}{l} - {x^2} + 4x - 3 \ge 0\\ - {x^2} + 4x - 3 = 2m + 3x - {x^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 \le x \le 3\\x = 2m + 3\end{array} \right.\)

Để phương trình (1) có nghiệm thì 1 ≤ 2m + 3 ≤ 3 – 1 ≤ m ≤ 0 m [– 1; 0].

Suy ra a = – 1, b = 0, do đó a2 + b2 = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Cách 1. Thay tọa độ các điểm A, B lần lượt vào các phương trình trong các đáp án thì thấy đáp án B không thỏa mãn.

Cách 2. Nhận thấy rằng các phương trình ở các đáp án A, C, D thì vectơ chỉ phương của các đường thẳng đó cùng phương, riêng chủ có đáp án B thì không. Do đó chọn đáp án B.

Lời giải

Đáp án đúng là: B

Ta có: x2 – 8x + 7 ≥ 0 \(\left[ \begin{array}{l}x \le 1\\x \ge 7\end{array} \right.\).

Suy ra tập nghiệm của bất phương trình là S = (– ∞; 1] [7; + ∞].

Do đó, [6; + ∞) S.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP