Câu hỏi:
16/12/2022 653Quảng cáo
Trả lời:
Đáp án đúng là: D
Đường tròn đường kính AB có tâm là trung điểm I của AB và có bán kính bằng nửa độ dài đoạn AB.
Ta có \(\overrightarrow {AB} = \left( {4;\,\, - 4} \right)\), suy ra \(AB = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = 4\sqrt 2 \).
Suy ra bán kính đường tròn là \(R = \frac{{AB}}{2} = 2\sqrt 2 \).
Tọa độ tâm là \(\left\{ \begin{array}{l}{x_I} = \frac{{1 + 5}}{2} = 3\\{y_I} = \frac{{3 + \left( { - 1} \right)}}{2} = 1\end{array} \right.\). Suy ra I(3; 1).
Phương trình đường tròn cần lập là: (x – 3)2 + (y – 1)2 = 8.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Cách 1. Thay tọa độ các điểm A, B lần lượt vào các phương trình trong các đáp án thì thấy đáp án B không thỏa mãn.
Cách 2. Nhận thấy rằng các phương trình ở các đáp án A, C, D thì vectơ chỉ phương của các đường thẳng đó cùng phương, riêng chủ có đáp án B thì không. Do đó chọn đáp án B.
Lời giải
Đáp án đúng là: B
Ta có: x2 – 8x + 7 ≥ 0 ⇔ \(\left[ \begin{array}{l}x \le 1\\x \ge 7\end{array} \right.\).
Suy ra tập nghiệm của bất phương trình là S = (– ∞; 1] ∪ [7; + ∞].
Do đó, [6; + ∞) ⊄ S.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.