Câu hỏi:

17/12/2022 1,482

Cho phương trình log24x2x+1m=x+1 . Hỏi có tất cả bao nhiêu giá trị nguyên của m để phương trình có hai nghiệm thực x phân biệt ?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Phương trình đã cho 4x2x+1m=2x+14x4.2xm=0 .

Đặt t=2x>0 phương trình trở thành ft=t24tm     1 .

Để phương trình có hai nghiệm thực phân biệt x thì phương trình (1) phải có hai nghiệm t phân biệt dương . Suy ra

Suy ra Δ'=4+m>0t1+t2=4>0t1.t2=m>04<m<0m3;2;1 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới . Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 3fx=m có đúng 4 nghiệm thực .
Media VietJack

Xem đáp án » 17/12/2022 7,058

Câu 2:

Họ nguyên hàm của hàm số f(x)=3x2sinx là:

Xem đáp án » 16/12/2022 5,921

Câu 3:

Biết rằng 01f(x)dx=2. Giá trị của tích phân 01f(x)2xdx bằng

Xem đáp án » 17/12/2022 2,325

Câu 4:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới. Gọi S là tập chứa tất cả các giá trị nguyên của tham số m[2021;2012] để hàm số y=ffx2m+1 có đúng 4 điểm cực trị. Số phần tử của tập S là:Media VietJack

Xem đáp án » 18/12/2022 2,262

Câu 5:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x2+2x+1x24x+5 lần lượt là:

Xem đáp án » 17/12/2022 1,701

Câu 6:

Cho biết nguyên hàm của hàm số y = f(x) trên R là F(x) và có F(0)=2F(1)=4.Giá trị của tích phân 01f(x)dx tương ứng bằng:

Xem đáp án » 17/12/2022 1,639

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL