Câu hỏi:
17/12/2022 265
Trong không gian với hệ trục Oxyz, cho đường thẳng và . Hãy lập phương trình đường thẳng d nằm trong mặt phẳng chứa hai đường thẳng ; sao cho ba đường thẳng đồng quy và khoảng cách từ gốc tọa độ O với đường thẳng d là lớn nhất:
Trong không gian với hệ trục Oxyz, cho đường thẳng và . Hãy lập phương trình đường thẳng d nằm trong mặt phẳng chứa hai đường thẳng ; sao cho ba đường thẳng đồng quy và khoảng cách từ gốc tọa độ O với đường thẳng d là lớn nhất:
Quảng cáo
Trả lời:
Chọn A
Dễ dàng tìm được giao điểm của hai đường thẳng và
Nếu gọi (P) là mặt phẳng chứa ba đương thẳng cặp VTCP của (P) và và VTPT của (P) là
Ta có:. Để khoảng cách từ O đến d lớn nhất thì đường thẳng d vuông góc OI tại I. Hay nói cách khác là một véc tơ pháp tuyến của d
Cặp VTPT của d là và . Suy ra VTCP của d là:
Chọn VTCP của đường thẳng d là:và d đi qua điểm Chọn đáp án D
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Ta có:
Lời giải
Chọn B
Số nghiệm của phương trình là số giao điểm của hai đồ thị và .
.
Suy ra cách vẽ: giữ nguyên phần đồ thị nằm trên trục hoành, phần nằm dưới lấy đối xứng qua trục hoành tồi xóa phần dưới đi.
Dựa và đồ thị ta nhận thấy để phương trình có bốn nghiệm thì
có 6 giá trị nguyên .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.