Câu hỏi:
22/12/2022 1,402
Cho 8 điểm phân biệt nằm trong mặt phẳng. Hỏi có bao nhiêu đoạn thẳng có hai đầu mút là hai trong 8 điểm đó.
Cho 8 điểm phân biệt nằm trong mặt phẳng. Hỏi có bao nhiêu đoạn thẳng có hai đầu mút là hai trong 8 điểm đó.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Các đoạn thẳng được lập không phân biệt điểm đầu và điểm cuối (ví dụ đoạn thẳng AB và đoạn thẳng BA là giống nhau).
Vậy cứ hai điểm phân biệt sẽ cho ta một đoạn thẳng.
Số đoạn thẳng có hai đầu mút là hai trong tám điểm nói trên là \(C_8^2 = 28\) đoạn thẳng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Cách 1:
Ta có \(\overrightarrow {AB} = \left( {3; - 4} \right)\).
Đường thẳng d có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 4} \right)\).
Suy ra đường thẳng d có vectơ pháp tuyến \(\vec n = \left( {4;3} \right)\).
Đường thẳng d đi qua điểm B(1; 0), có vectơ pháp tuyến \(\vec n = \left( {4;3} \right)\).
Suy ra phương trình tổng quát của d: 4(x – 1) + 3(y – 0) = 0.
⇔ 4x + 3y – 4 = 0.
Cách 2:
Phương trình của d là: \(\frac{{x + 2}}{{1 + 2}} = \frac{{y - 4}}{{0 - 4}}\)
\( \Leftrightarrow \frac{{x + 2}}{3} = \frac{{y - 4}}{{ - 4}}\)
⇔ –4(x + 2) = 3(y – 4)
⇔ 4x + 3y – 4 = 0.
Vậy ta chọn phương án B.
Lời giải

Từ điểm I kẻ IH vuông góc với đường thẳng d (H ∈ d).
Khi đó H là trung điểm của AB.
Khoảng cách từ điểm I đến đường thẳng d là: d(I, d) = \(\frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\).
Diện tích tam giác IAB bằng 4 nên độ dài cạnh AB bằng: 2.4 : 2 = 4.
⇒ AH = HB = \(\frac{1}{2}\)AB = 2.
Xét tam giác AIH, vuông tại H có: IA = \(\sqrt {I{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Khi đó phương trình đường tròn (C) có tâm I(1; – 2) và bán kính IA = \(2\sqrt 2 \) là:
(x – 1)2 + (y + 2)2 = 8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.