Câu hỏi:

28/12/2022 4,142 Lưu

Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

Media VietJack

Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.

Do đó số loại giao tử của kiểu gen AaBb là 4.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta loại phương án D vì không có dạng x2 + y2 – 2ax – 2by + c = 0.

Xét phương án A: x2 + y2 + 2x – 4y + 9 = 0 có a = –1, b = 2 và c = 9.

Do đó a2 + b2 – c = (–1)2 + 22 – 9 = –4 < 0 nên loại A.

Xét phương án B: x2 + y2 – 6x + 4y + 13 = 0 có a = 3; b = –2 và c = 13

Do đó a2 + b2 – c = 32 + (–2)2 – 13 = 0 nên loại B.

Xét phương án C: 2x2 + 2y2 – 8x – 4y + 2 = 0

Û x2 + y2 – 4x – 2y + 1 = 0.

Có a = 2; b = 1 và c = 1.

Do đó a2 + b2 – c = 22 + 12 – 1 = 4 > 0 nên chọn C.

Vậy ta chọn phương án C.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta có:

Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.

Do đó phương án B, D đều sai.

Nếu ∆ = 0 và \({x_0} = - \frac{b}{{2a}}\) là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x ≠ x0.

Do đó phương án C đúng.

Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì f(x) trái dấu với a với mọi x trong khoảng (x1; x2); f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1); (x2; +∞).

Do đó phương án A sai.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP