Câu hỏi:

28/12/2022 243

Viết phương trình đường tròn tâm I đi qua 3 điểm A(1; 1), B(2; 3) và C(4; 6).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Gọi M, N lần lượt là trung điểm của AB, AC.

Khi đó \(M\left( {\frac{3}{2};2} \right),\,\,N\left( {\frac{5}{2};\frac{7}{2}} \right)\)

Đường trung trực d của đoạn thẳng AB là đường thẳng đi qua M và nhận \(\overrightarrow {AB} = \left( {1;2} \right)\) làm vectơ pháp tuyến nên có phương trình:

\(x - \frac{3}{2} + 2\left( {y - 2} \right) = 0 \Leftrightarrow 2x + 4y - 11 = 0\)

Đường trung trực ∆ của đoạn thẳng AC là đường thẳng đi qua N và nhận \(\overrightarrow {AC} = \left( {3;5} \right)\) làm vectơ pháp tuyến nên có phương trình:

\(3\left( {x - \frac{5}{2}} \right) + 5\left( {y - \frac{7}{2}} \right) = 0 \Leftrightarrow 3x + 5y - 25 = 0\)

Đường thẳng d cắt đường thẳng ∆ cắt nhau tại điểm \(I\left( {\frac{{45}}{2}; - \frac{{17}}{2}} \right)\) cách đều ba điểm A, B, C.

Do đó đường tròn đi qua ba điểm A, B, C có tâm \(I\left( {\frac{{45}}{2}; - \frac{{17}}{2}} \right)\) và bán kính \({R^2} = I{A^2} = {\left( {1 - \frac{{45}}{2}} \right)^2} + {\left( {1 + \frac{{17}}{2}} \right)^2} = \frac{{1105}}{2}\)

Ta có \({\left( {\frac{{45}}{2}} \right)^2} + {\left( { - \frac{{17}}{2}} \right)^2} - \frac{{1105}}{2} = 26\)

Khi đó đường tròn (C) có phương trình là:

x2 + y2 – 45x + 17y + 36 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta loại phương án D vì không có dạng x2 + y2 – 2ax – 2by + c = 0.

Xét phương án A: x2 + y2 + 2x – 4y + 9 = 0 có a = –1, b = 2 và c = 9.

Do đó a2 + b2 – c = (–1)2 + 22 – 9 = –4 < 0 nên loại A.

Xét phương án B: x2 + y2 – 6x + 4y + 13 = 0 có a = 3; b = –2 và c = 13

Do đó a2 + b2 – c = 32 + (–2)2 – 13 = 0 nên loại B.

Xét phương án C: 2x2 + 2y2 – 8x – 4y + 2 = 0

Û x2 + y2 – 4x – 2y + 1 = 0.

Có a = 2; b = 1 và c = 1.

Do đó a2 + b2 – c = 22 + 12 – 1 = 4 > 0 nên chọn C.

Vậy ta chọn phương án C.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta có:

Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.

Do đó phương án B, D đều sai.

Nếu ∆ = 0 và \({x_0} = - \frac{b}{{2a}}\) là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x ≠ x0.

Do đó phương án C đúng.

Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì f(x) trái dấu với a với mọi x trong khoảng (x1; x2); f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1); (x2; +∞).

Do đó phương án A sai.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP