Câu hỏi:
13/07/2024 2,017Hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 quả đen và 2 quả trắng, hộp thứ hai chứa 4 quả đen và 6 quả trắng.
a) Lấy ngẫu nhiên từ hộp thứ nhất 1 quả. Tính xác suất để lấy được 1 quả đen.
b) Lấy ngẫu nhiên từ mỗi hộp một quả. Tính xác suất để lấy được 2 quả cùng màu.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có: \(n\left( \Omega \right) = C_5^1\)
Gọi A là biến cố: “Lấy được một quả màu đen”.
Để lấy được một quả bóng đen từ hộp thứ nhất có: n(A) = \(C_3^1\).
Vì vậy xác suất để biến cố A xảy ra là: P(A) = \(\frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_3^1}}{{C_5^1}} = \frac{3}{5}\).
b) Ta có: \(n\left( \Omega \right) = C_5^1C_{10}^1\)
Gọi B là biến cố: “Lấy được 2 quả cùng màu”.
Các kết quả thuận lợi cho biến cố B được chia làm 2 phương án:
Phương án 1: Hai quả bóng lấy ra đều màu đen có \(C_3^1.C_4^1\) cách.
Phương án 2: Hai quả bóng lấy ra đều màu trắng có \(C_2^1.C_6^1\) cách.
⇒ n(B) = \(C_3^1.C_4^1\).
Vì vậy xác suất để biến cố B xảy ra là: P(B) = \(\frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{C_3^1.C_4^1 + C_2^1.C_6^1}}{{C_5^1.C_{10}^1}} = \frac{{12}}{{25}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.
Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:
Câu 7:
về câu hỏi!