Câu hỏi:

31/12/2022 890

Tìm tập các tâm I của mặt cầu (S) tiếp xúc với hai mặt phẳng P:  x2y+2z+4=0;  Q:x2y+2z6=0

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Gọi A(-4,0,0) và B(6,0,0) lần lượt là giao điểm của trục x’Ox với (P) và (Q). Trung điểm E(1,0,0) của AB cách đều (P) và (Q).

Tâm I cách đều (P) và (Q) => EI nằm trong mặt (R) qua E song song và cách đều (P) và (Q) ((P)//(Q)).

R:x2y+2z+D=0,ERD=1

Vậy IR:x2y+2z1=0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

(S) có tâm I(2,1,-3), bán kính R=4dI,P=3=IH,IHP

r2=R2IH2=169=7r=7

Lời giải

Chọn B

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = a căn bậc hai 2, hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm (ảnh 1)

Gọi M là trung điểm AC, suy ra SMABCSMAC.

Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S. 

Ta có AC=AB2+BC2=a2, suy ra tam giác SAC đều.

Gọi G là trọng tâm ΔSAC, suy ra GS=GA=GC   (1)

Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

Lại có SMABC nên SM là trục của tam giác ABC.

Mà G  thuộc SM nên suy ra GA=GB=GC    (2)

Từ (1)  và (2) , suy ra GS=GA=GB=GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC  .

Bán kính mặt cầu R=GS=23SM=a63

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP