Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \[3x - y - 3 = 0\]. Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] và phép tịnh tiến theo vectơ \[\overrightarrow v \left( {1;3} \right)\] biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’.
Quảng cáo
Trả lời:

Đáp án D
Phương pháp
Sử dụng biểu thức tọa độ của phép vị tự tâm \[I\left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\]
Sử dụng biểu thức tọa độ của phép tịnh tiến theo véctơ \[\overrightarrow v = \left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\].
Cách giải
Gọi \[M\left( {x;y} \right) \in d:3x - y - 3 = 0\]
Gọi \[M'\left( {x';y'} \right)\] là ảnh của \[M\left( {x;y} \right)\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\].
Khi đó ta có \[\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\] nên \[M\left( { - x' + 4; - y' + 6} \right)\]
Mà \[M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\] nên ta có \[\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) = 0 \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0 \Leftrightarrow 3x' - y' - 3 = 0\end{array}\]
Do đó, ảnh của đường thẳng \[d:3x - y - 3 = 0\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] là đường thẳng \[d':3x - y - 3 = 0\] .
Ta tìm ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\].
Gọi \[N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\] và \[N'\left( {{x_2};{y_2}} \right)\] là ảnh của qua \[{T_{\overrightarrow v }}\].
Khi đó ta có: \[\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\].
Thay tọa độ \[N\left( {{x_2} - 1;{y_2} - 3} \right)\] vào phương trình đường thẳng \[d':3x - y - 3 = 0\] ta được: \[3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0 \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\]
Vậy ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\] là đường thẳng \[{d_1}:3x - y - 3 = 0\].
Hay đường thẳng cần tìm là: \[{d_1}:3x - y - 3 = 0\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp
Hàm số \[y = \tan x\] xác định khi \[\cos x \ne 0\]
Cách giải
Hàm số \[y = \tan x\] xác định khi \[\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \].
Nên TXĐ: \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\].
Lời giải
Đáp án B
Phương pháp
Sử dụng kiến thức về cách xác định mặt phẳng trong không gian.
Cách giải
Đáp án A: Có duy nhất một mặt phẳng đi qua ba điểm phân biệt cho trước là sai vì ta cần thêm điều kiện ba điểm này không thẳng hàng.
Đáp án B: Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước là đúng.
Đáp án C: Có duy nhất một mặt phẳng đi qua một điểm và một đường thẳng cho trước là sai vì ta cần thêm điều kiện điểm đó nằm ngoài đường thẳng.
Đáp án D: Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.