Câu hỏi:

30/01/2023 427

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \[3x - y - 3 = 0\]. Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] và phép tịnh tiến theo vectơ \[\overrightarrow v \left( {1;3} \right)\] biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp

Sử dụng biểu thức tọa độ của phép vị tự tâm \[I\left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\]

Sử dụng biểu thức tọa độ của phép tịnh tiến theo véctơ \[\overrightarrow v = \left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\].

Cách giải

Gọi \[M\left( {x;y} \right) \in d:3x - y - 3 = 0\]

Gọi \[M'\left( {x';y'} \right)\] là ảnh của \[M\left( {x;y} \right)\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\].

Khi đó ta có \[\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\] nên \[M\left( { - x' + 4; - y' + 6} \right)\]

\[M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\] nên ta có \[\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) = 0 \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0 \Leftrightarrow 3x' - y' - 3 = 0\end{array}\]

Do đó, ảnh của đường thẳng \[d:3x - y - 3 = 0\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] là đường thẳng \[d':3x - y - 3 = 0\] .

Ta tìm ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\].

Gọi \[N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\]\[N'\left( {{x_2};{y_2}} \right)\] là ảnh của qua \[{T_{\overrightarrow v }}\].

Khi đó ta có: \[\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\].

Thay tọa độ \[N\left( {{x_2} - 1;{y_2} - 3} \right)\] vào phương trình đường thẳng \[d':3x - y - 3 = 0\] ta được: \[3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0 \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\]

Vậy ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\] là đường thẳng \[{d_1}:3x - y - 3 = 0\].

Hay đường thẳng cần tìm là: \[{d_1}:3x - y - 3 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp

Hàm số \[y = \tan x\] xác định khi \[\cos x \ne 0\]

Cách giải

Hàm số \[y = \tan x\] xác định khi  \[\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \].

Nên TXĐ: \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\].

Câu 2

Lời giải

Đáp án B

Phương pháp

Sử dụng kiến thức về cách xác định mặt phẳng trong không gian.

Cách giải

Đáp án A: Có duy nhất một mặt phẳng đi qua ba điểm phân biệt cho trước là sai vì ta cần thêm điều kiện ba điểm này không thẳng hàng.

Đáp án B: Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước là đúng.

Đáp án C: Có duy nhất một mặt phẳng đi qua một điểm và một đường thẳng cho trước là sai vì ta cần thêm điều kiện điểm đó nằm ngoài đường thẳng.

Đáp án D: Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP