Câu hỏi:
30/01/2023 928Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp
a) Sử dụng định lí \[\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a//b\end{array} \right. \Rightarrow d//a//b\]
b) Phương pháp xác định giao điểm của đường thẳng với mặt phẳng:
- Tìm mặt phẳng phụ \[\left( P \right)\] chứa đường thẳng a.
- Tìm giao tuyến d của \[\left( P \right)\] với \[\left( \alpha \right)\] đã cho.
- Tìm giao điểm của d với a.
Sử dụng định lí Ta-let suy ra tỉ số.
Cách giải
a) Xác định giao tuyến của hai mặt phẳng \[\left( {{\bf{SAB}}} \right)\] và \[\left( {{\bf{SCD}}} \right)\].
S là điểm chung của \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
\[AB//CD;AB \subset \left( {SAB} \right);CD \subset \left( {SCD} \right)\].
Suy ra \[\left( {SAB} \right) \cap \left( {SCD} \right) = Sx//AB//CD\].
b) Xác định giao điểm K của đường thẳng AM với \[{\bf{mp}}\left( {{\bf{SBD}}} \right)\]. Tính tỉ số \[\frac{{{\bf{AK}}}}{{{\bf{AM}}}}\].
Ta có: \[AM \subset \left( {SAC} \right)\]
Dễ thấy \[S \in \left( {SAC} \right) \cap \left( {SBD} \right)\].
Gọi O là giao điểm của AC và BD. Khi đó \[O \in AC \subset \left( {SAC} \right),O \in BD \subset \left( {SBD} \right)\] nên \[O \in \left( {SAC} \right) \cap \left( {SBD} \right)\]
Do đó \[SO = \left( {SAC} \right) \cap \left( {SBD} \right)\]
Trong \[\left( {SAC} \right)\], gọi \[K = AM \cap SO\] thì \[K \in AM,K \in SO \subset \left( {SBD} \right)\] nên \[K = AM \cap \left( {SBD} \right)\].
Do \[AB//CD\] nên \[\frac{{OC}}{{OA}} = \frac{{CD}}{{AB}} = \frac{1}{2} \Rightarrow OA = \frac{2}{3}AC,OC = \frac{1}{3}AC\].
Gọi E là trung điểm của OC suy ra ME là đường trung bình của \[\Delta SCO \Rightarrow ME//SO\].
Mà \[OE = \frac{1}{2}OC = \frac{1}{2}.\frac{1}{3}.AC = \frac{1}{6}.AC \Rightarrow AE = AO + OE = \frac{2}{3}AC + \frac{1}{6}AC = \frac{5}{6}AC\].
\[ \Rightarrow \frac{{AK}}{{AM}} = \frac{{AO}}{{AE}} = \frac{4}{5}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Câu 5:
Câu 6:
Câu 7:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận