Câu hỏi:
30/01/2023 3,677Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
Giải phương trình lượng giác đặc biệt: \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\).
Cách giải:
\(\sin \left( {2x - \frac{\pi }{6}} \right) + 1 = 0 \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = - 1\)
\( \Leftrightarrow 2x - \frac{\pi }{6} = \frac{{ - \pi }}{2} + k2\pi \Leftrightarrow x = - \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
về câu hỏi!