Câu hỏi:

12/07/2024 7,444

Cho hình chóp S.ABCD, đáy ABCD là hình thang lớn AD. Gọi E, F lần lượt là trung điểm của SA, SD.

a) Tìm giao tuyến của các cặp mặt phẳng \(\left( {SAC} \right),\left( {SBD} \right);\left( {SAD} \right),\left( {SBC} \right).\)

b) Chứng minh \(EF\parallel \left( {ABCD} \right);EF\parallel \left( {SBC} \right).\)

c) Gọi K là giao điểm của AB, CD. Tìm M, N lần lượt là giao điểm của SB, \(\left( {CDE} \right)\); SC, \(\left( {EFM} \right)\). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {KEF} \right).\)

d) Cho \(AD = 2BC.\) Tính tỉ số diện tích của tam giác KMN và tam giác KEF.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

a) Xác định các điểm chung của hai mặt phẳng.

b) Chứng minh EF song song với một đường thẳng nằm trong mặt phẳng \(\left( {ABCD} \right)\)\(\left( {SBC} \right)\).

c) Tìm giao điểm của SB với một đường thẳng nằm trong \(\left( {CDE} \right)\) và tìm giao điểm cả SC với một đường thẳng nằm trong \(\left( {EFM} \right).\) Từ đó suy ra thiết diện.

d) Sử dụng công thức: \(\frac{{{S_{KMN}}}}{{{S_{KEF}}}} = \frac{{KM}}{{KE}}.\frac{{KN}}{{KF}}.\)

Cách giải:

 

Media VietJack

a) * Tìm \(\left( {SAC} \right) \cap \left( {SBD} \right) = ?\)

+ Dễ thấy S là điểm chung thứ nhất.

+ Trong \(\left( {ABCD} \right)\), gọi \(AC \cap BD = \left\{ O \right\}\) ta có:

\(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset SBD \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right) \Rightarrow O\) là điểm chung thứ hai.

Vậy \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO.\)

* Tìm \(\left( {SAD} \right) \cap \left( {SBC} \right) = ?.\)

+ Dễ thấy S là điểm chung thứ nhất.

+ Ta có: \[\left\{ \begin{array}{l}\left( {SAD} \right) \supset AD\\\left( {SBC} \right) \supset BC\\AD\parallel BC\left( {gt} \right)\end{array} \right. \Rightarrow \left( {SAD} \right),\left( {SBC} \right)\] cắt nhau theo giao tuyến là đường thẳng qua S và song song với AD, BC.

Trong \(\left( {SAD} \right)\) kẻ đường thẳng d qua S và \(d\parallel AD\parallel BC \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = d.\)

b) Ta có: EF là đường trung bình của \(\Delta SAD\) nên \(EF\parallel AD\) (Tính chất đường trung bình của tam giác).

Mà \(AD \subset \left( {ABCD} \right) \Rightarrow EF\parallel \left( {ABCD} \right).\)

Ta có: \(EF\parallel AD\), mà \(AD\parallel BC\left( {gt} \right) \Rightarrow EF\parallel BC.\)

Lại có \(BC \subset \left( {SBC} \right) \Rightarrow EF\parallel \left( {SBC} \right).\)

c) Trong \(\left( {SAB} \right)\) gọi \(M = EK \cap SB\) ta có: \(\left\{ \begin{array}{l}M \in SB\\M \in EK \subset \left( {CDE} \right) \Rightarrow M \in \left( {CDE} \right)\end{array} \right. \Rightarrow M = SB \cap \left( {CDE} \right).\)

Trong \(\left( {SCD} \right)\) gọi \(N = FK \cap SC\) ta có: \(\left\{ \begin{array}{l}N \in SC\\N \in FK \subset \left( {EFM} \right) \Rightarrow M \in \left( {EFM} \right)\end{array} \right. \Rightarrow N = SC \cap \left( {EFM} \right).\)

Ta có: \(\left\{ \begin{array}{l}\left( {KEF} \right) \cap \left( {SAB} \right) = EM\\\left( {KEF} \right) \cap \left( {SBC} \right) = MN\\\left( {KEF} \right) \cap \left( {SCD} \right) = NF\\\left( {KEF} \right) \cap \left( {SAD} \right) = EF\end{array} \right. \Rightarrow \) Thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {KEF} \right)\) là tứ giác EMNF.

d) Áp dụng định lí Menelaus cho tam giác FKD ta có: \(\frac{{CD}}{{CK}}.\frac{{NK}}{{NF}}.\frac{{SF}}{{SD}} = 1.\)

Áp dụng định lí Ta-lét ta có: \(\frac{{KC}}{{KD}} = \frac{{BC}}{{AD}} = \frac{1}{2} \Rightarrow C\) là trung điểm của \(KD \Rightarrow \frac{{CK}}{{CD}} = 1.\)

F là trung điểm của \(SD\left( {gt} \right) \Rightarrow \frac{{SF}}{{SD}} = \frac{1}{2}.\)

\( \Rightarrow 1.\frac{{NK}}{{NF}}.\frac{1}{2} = 1 \Rightarrow \frac{{NK}}{{NF}} = 2.\)

Tương tự ta có: \(\frac{{MK}}{{ME}} = 2.\)

Suy ra \(\frac{{{S_{KMN}}}}{{{S_{KEF}}}} = \frac{{KM}}{{KE}}.\frac{{KN}}{{KF}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ba mặt phẳng phân biệt \(\left( \alpha \right),\left( \beta \right),\left( \gamma \right)\)\(\left( \alpha \right) \cap \left( \beta \right) = {d_1};\left( \beta \right) \cap \left( \gamma \right) = {d_2};\left( \alpha \right) \cap \left( \gamma \right) = {d_3}.\) Khi đó ba đường thẳng \({d_1},{d_2},{d_3}\) :

Xem đáp án » 30/01/2023 18,857

Câu 2:

Cô dâu và chú rể mời 6 người ra chụp ảnh kỉ niệm, người thợ chụp hình có bao nhiêu cách sắp xếp sao cho cô dâu, chú rể đứng cạnh nhau.

Xem đáp án » 30/01/2023 4,955

Câu 3:

Hàm số nào trong các hàm số dưới đây có đồ thị nhận gốc tọa độ O làm tâm đối xứng?

Xem đáp án » 30/01/2023 4,151

Câu 4:

Hãy mô tả không gian mẫu của phép thử: “Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp”.

Xem đáp án » 30/01/2023 3,289

Câu 5:

Mệnh đề nào sau đây là đúng?

Xem đáp án » 30/01/2023 2,631

Câu 6:

Phương trình \(\cos \left( {x - \frac{{5\pi }}{6}} \right) = 1\) có nghiệm là:

Xem đáp án » 30/01/2023 1,217

Bình luận


Bình luận
Vietjack official store