Câu hỏi:

12/07/2024 6,236

Cho hình chóp S.ABCD, đáy ABCD là hình thang lớn AD. Gọi E, F lần lượt là trung điểm của SA, SD.

a) Tìm giao tuyến của các cặp mặt phẳng \(\left( {SAC} \right),\left( {SBD} \right);\left( {SAD} \right),\left( {SBC} \right).\)

b) Chứng minh \(EF\parallel \left( {ABCD} \right);EF\parallel \left( {SBC} \right).\)

c) Gọi K là giao điểm của AB, CD. Tìm M, N lần lượt là giao điểm của SB, \(\left( {CDE} \right)\); SC, \(\left( {EFM} \right)\). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {KEF} \right).\)

d) Cho \(AD = 2BC.\) Tính tỉ số diện tích của tam giác KMN và tam giác KEF.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

a) Xác định các điểm chung của hai mặt phẳng.

b) Chứng minh EF song song với một đường thẳng nằm trong mặt phẳng \(\left( {ABCD} \right)\)\(\left( {SBC} \right)\).

c) Tìm giao điểm của SB với một đường thẳng nằm trong \(\left( {CDE} \right)\) và tìm giao điểm cả SC với một đường thẳng nằm trong \(\left( {EFM} \right).\) Từ đó suy ra thiết diện.

d) Sử dụng công thức: \(\frac{{{S_{KMN}}}}{{{S_{KEF}}}} = \frac{{KM}}{{KE}}.\frac{{KN}}{{KF}}.\)

Cách giải:

 

Media VietJack

a) * Tìm \(\left( {SAC} \right) \cap \left( {SBD} \right) = ?\)

+ Dễ thấy S là điểm chung thứ nhất.

+ Trong \(\left( {ABCD} \right)\), gọi \(AC \cap BD = \left\{ O \right\}\) ta có:

\(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset SBD \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right) \Rightarrow O\) là điểm chung thứ hai.

Vậy \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO.\)

* Tìm \(\left( {SAD} \right) \cap \left( {SBC} \right) = ?.\)

+ Dễ thấy S là điểm chung thứ nhất.

+ Ta có: \[\left\{ \begin{array}{l}\left( {SAD} \right) \supset AD\\\left( {SBC} \right) \supset BC\\AD\parallel BC\left( {gt} \right)\end{array} \right. \Rightarrow \left( {SAD} \right),\left( {SBC} \right)\] cắt nhau theo giao tuyến là đường thẳng qua S và song song với AD, BC.

Trong \(\left( {SAD} \right)\) kẻ đường thẳng d qua S và \(d\parallel AD\parallel BC \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = d.\)

b) Ta có: EF là đường trung bình của \(\Delta SAD\) nên \(EF\parallel AD\) (Tính chất đường trung bình của tam giác).

Mà \(AD \subset \left( {ABCD} \right) \Rightarrow EF\parallel \left( {ABCD} \right).\)

Ta có: \(EF\parallel AD\), mà \(AD\parallel BC\left( {gt} \right) \Rightarrow EF\parallel BC.\)

Lại có \(BC \subset \left( {SBC} \right) \Rightarrow EF\parallel \left( {SBC} \right).\)

c) Trong \(\left( {SAB} \right)\) gọi \(M = EK \cap SB\) ta có: \(\left\{ \begin{array}{l}M \in SB\\M \in EK \subset \left( {CDE} \right) \Rightarrow M \in \left( {CDE} \right)\end{array} \right. \Rightarrow M = SB \cap \left( {CDE} \right).\)

Trong \(\left( {SCD} \right)\) gọi \(N = FK \cap SC\) ta có: \(\left\{ \begin{array}{l}N \in SC\\N \in FK \subset \left( {EFM} \right) \Rightarrow M \in \left( {EFM} \right)\end{array} \right. \Rightarrow N = SC \cap \left( {EFM} \right).\)

Ta có: \(\left\{ \begin{array}{l}\left( {KEF} \right) \cap \left( {SAB} \right) = EM\\\left( {KEF} \right) \cap \left( {SBC} \right) = MN\\\left( {KEF} \right) \cap \left( {SCD} \right) = NF\\\left( {KEF} \right) \cap \left( {SAD} \right) = EF\end{array} \right. \Rightarrow \) Thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {KEF} \right)\) là tứ giác EMNF.

d) Áp dụng định lí Menelaus cho tam giác FKD ta có: \(\frac{{CD}}{{CK}}.\frac{{NK}}{{NF}}.\frac{{SF}}{{SD}} = 1.\)

Áp dụng định lí Ta-lét ta có: \(\frac{{KC}}{{KD}} = \frac{{BC}}{{AD}} = \frac{1}{2} \Rightarrow C\) là trung điểm của \(KD \Rightarrow \frac{{CK}}{{CD}} = 1.\)

F là trung điểm của \(SD\left( {gt} \right) \Rightarrow \frac{{SF}}{{SD}} = \frac{1}{2}.\)

\( \Rightarrow 1.\frac{{NK}}{{NF}}.\frac{1}{2} = 1 \Rightarrow \frac{{NK}}{{NF}} = 2.\)

Tương tự ta có: \(\frac{{MK}}{{ME}} = 2.\)

Suy ra \(\frac{{{S_{KMN}}}}{{{S_{KEF}}}} = \frac{{KM}}{{KE}}.\frac{{KN}}{{KF}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ba mặt phẳng phân biệt \(\left( \alpha \right),\left( \beta \right),\left( \gamma \right)\)\(\left( \alpha \right) \cap \left( \beta \right) = {d_1};\left( \beta \right) \cap \left( \gamma \right) = {d_2};\left( \alpha \right) \cap \left( \gamma \right) = {d_3}.\) Khi đó ba đường thẳng \({d_1},{d_2},{d_3}\) :

Xem đáp án » 30/01/2023 17,157

Câu 2:

Cô dâu và chú rể mời 6 người ra chụp ảnh kỉ niệm, người thợ chụp hình có bao nhiêu cách sắp xếp sao cho cô dâu, chú rể đứng cạnh nhau.

Xem đáp án » 30/01/2023 4,638

Câu 3:

Hàm số nào trong các hàm số dưới đây có đồ thị nhận gốc tọa độ O làm tâm đối xứng?

Xem đáp án » 30/01/2023 3,849

Câu 4:

Hãy mô tả không gian mẫu của phép thử: “Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp”.

Xem đáp án » 30/01/2023 3,175

Câu 5:

Mệnh đề nào sau đây là đúng?

Xem đáp án » 30/01/2023 2,550

Câu 6:

Phương trình \(\cos \left( {x - \frac{{5\pi }}{6}} \right) = 1\) có nghiệm là:

Xem đáp án » 30/01/2023 1,150

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store