Câu hỏi:

01/02/2023 2,686

Có hai dãy ghế ngồi đối diện nhau, mỗi dãy gồm 6 ghế. Xếp ngẫu nhiên 6 học sinh lớp 11A và 6 học sinh lớp 11B vào hai dãy ghế trên. Có bao nhiêu cách xếp để hai học sinh ngồi đối diện là khác lớp.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

 
Media VietJack

Đánh số ghế như hình vẽ. Khi đó, chúng ta tiến hành xếp chỗ cho 12 học sinh đó như sau:

+ Ghế 1-1 có thể xếp bất kì học sinh của lớp nào cũng được. Do đó có: 6 + 6 = 12( cách xếp).

+ Ghế 1-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 1-1. Do đó có 6 (cách xếp).

+ Ghế 2-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 2 học sinh đã được xếp chỗ. Do đó có: 12 - 2 = 10( cách xếp).

+ Ghế 2-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 2-1. Do đó có 5 (cách xếp).

+ Ghế 3-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 4 học sinh đã được xếp chỗ. Do đó có: 12- 4 = 8( cách xếp).

+ Ghế 3-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 3-1. Do đó có 4 (cách xếp).

+ Ghế 4-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 6 học sinh đã được xếp chỗ. Do đó có: 12 - 6 = 6( cách xếp).

+ Ghế 4-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 4-1. Do đó có 3 (cách xếp).

+ Ghế 5-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 8 học sinh đã được xếp chỗ. Do đó có: 12- 8 = 4( cách xếp).

+ Ghế 5-2 có thể xếp học sinh của lớp chưa ngồi ở ghế 5-1. Do đó có 2 (cách xếp).

+ Ghế 6-1 có thể xếp bất kì học sinh của lớp nào cũng được trừ 10 học sinh đã được xếp chỗ. Do đó có: 12 - 10 = 2( cách xếp).

+ Ghế 6-2  chỉ có thể xếp học sinh của lớp chưa ngồi ở ghế 6-1. Do đó chỉ còn có  (cách xếp).

Vậy, theo qui tắc nhân số cách xếp để hai học sinh ngồi đối diện là khác lớp là:

12.6.10.5.8.4.6.3.4.2.2.1=33177600 (cách xếp)

Cách 2:

Xếp 6 học sinh lớp 11A vào dãy ghế thứ nhất thì có 6! cách xếp.

Xếp 6 học sinh lớp 11B vào dãy ghế thứ hai thì có 6! cách xếp.

Ở các cặp ghế đối diện nhau hai bạn học sinh lớp 11A và học sinh lớp 11B có thể đổi chỗ cho nhau nên có 26 cách xếp.

Vậy, số cách xếp để hai học sinh ngồi đối diện là khác lớp là:6!.6!.26=33177600(cách xếp).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình cot45°x=33 có họ nghiệm là

Xem đáp án » 02/02/2023 4,419

Câu 2:

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 4cos 2x + 1 lần lượt là:

Xem đáp án » 02/02/2023 3,725

Câu 3:

Phương trình cosxπ3+sin5π6x=0 có nghiệm âm lớn nhất là:

Xem đáp án » 01/02/2023 2,842

Câu 4:

Có 7 quả cầu xanh đánh số từ 1 đến 7, 6 quả cầu đỏ đánh số từ 1 đến 6, 5 quả cầu trắng đánh số từ 1 đến 5.Hỏi có bao nhiêu cách lấy ra 3 quả cầu vừa khác màu vừa khác số?

Xem đáp án » 02/02/2023 1,716

Câu 5:

Nghiệm của phương trình 2cosx - 1= 0 là:

Xem đáp án » 01/02/2023 1,229

Câu 6:

Có bao nhiêu cách xếp 10 người thành một hàng dọc?

Xem đáp án » 02/02/2023 1,138

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store