Cho khối tứ diện đều ABCD. Gọi M,N lần lượt là trung điểm của AB,CD. Sử dụng mặt phẳng trung trực của AB và mặt phẳng trung trực của CD ta chia khối tứ diện đó thành bốn khối tứ diện nào sau đây?
A.
B.
Quảng cáo
Trả lời:
Phương pháp:
Sử dụng khái niệm mặt phẳng trung trực của đoạn thẳng là mặt phẳng vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.
Cách giải:

Vì ABCD là tứ diện đều nên các mặt của nó là tam giác đều.
Ta có: tại là mặt phẳng trung trực của AB.
Chứng minh tương tự ta có (NAB) là mặt phẳng trung trực của CD.
Khi đó chia khối tứ diện thành bốn khối tứ diện: .
Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Câu 2
Lời giải
Phương pháp:
- Sử dụng chiều đồ thị suy ra dấu của hệ số a
- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số d
- Dựa vào dấu các điểm cực trị của hàm số suy ra dấu của hệ số b,c
Cách giải:
Đồ thị hàm số có nhánh cuối cùng đi lên nên a > 0
Đồ thị đi qua điểm nên d = 0
Hàm số có 2 điểm cực trị và
Ta có có 2 nghiệm phân biệt thỏa mãn
Vậy có một số dương trong các số a,b,c,d.
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

