Câu hỏi:
02/02/2023 2,571Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Xác định thiết diện dựa vào các yếu tố song song.
Cách giải:
Gọi Q là trung điểm của AD.
Ta có: \(PQ//AC\) (do PQ là đường trung bình của tam giác ACD)
\(MN//AC\) (do MN là đường trung bình của tam giác ABC).
\( \Rightarrow PQ//MN \Rightarrow \) M, N, P, Q đồng phẳng \( \Rightarrow \)\(Q \in \left( {MNP} \right)\)
\( \Rightarrow \)Thiết diện của tứ diện cắt bởi mặt phẳng (MNP) là tứ giác MNQP.
Ta có: \(PQ//MN,\,PQ = MN\left( { = \frac{1}{2}AC} \right) \Rightarrow \)MNQP là hình bình hành
Vậy, thiết diện của tứ diện cắt bởi mp(MNP) là hình bình hành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\) và \(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.
a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).
b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.
c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?
về câu hỏi!