Câu hỏi:

02/02/2023 4,361 Lưu

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện cắt bởi mp(MNP) là hình gì trong các hình sau?

A. Hình thoi.
B. Hình vuông.
C. Hình chữ nhật.
D. Hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Xác định thiết diện dựa vào các yếu tố song song.

Media VietJack

Cách giải:

Gọi Q là trung điểm của AD.

Ta có: \(PQ//AC\) (do PQ là đường trung bình của tam giác ACD)

\(MN//AC\) (do MN là đường trung bình của tam giác ABC).

\( \Rightarrow PQ//MN \Rightarrow \) M, N, P, Q đồng phẳng \( \Rightarrow \)\(Q \in \left( {MNP} \right)\)

\( \Rightarrow \)Thiết diện của tứ diện cắt bởi mặt phẳng (MNP) là tứ giác MNQP.

Ta có: \(PQ//MN,\,PQ = MN\left( { = \frac{1}{2}AC} \right) \Rightarrow \)MNQP là hình bình hành

Vậy, thiết diện của tứ diện cắt bởi mp(MNP) là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Áp dụng Công thức khai triển nhị thức Newton: \({\left( {x + y} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \).

Cách giải:

Hệ số của \({x^5}\) trong khai triển \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) bằng tổng hệ số của \({x^4}\) trong khai triển \({\left( {2{\rm{x}} - 1} \right)^6}\) và hệ số của \({x^5}\) trong khai triển \({\left( {3{\rm{x}} - 1} \right)^8}\).

+) \({\left( {2{\rm{x}} - 1} \right)^6} = \sum\limits_{i = 0}^6 {C_6^i{{\left( {2{\rm{x}}} \right)}^i}.{{\left( { - 1} \right)}^{6 - i}} = \sum\limits_{i = 0}^6 {C_6^i{2^i}{{\left( { - 1} \right)}^{6 - i}}{x^i}} } \).

Hệ số của \({x^4}\) trong khai triển \({\left( {2{\rm{x}} - 1} \right)^6}\) ứng với \(i = 4\) và bằng \(C_6^4{2^4}{\left( { - 1} \right)^{6 - 4}} = 240\).

+) \({\left( {{\rm{3x}} - 1} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( {3{\rm{x}}} \right)}^k}.{{\left( { - 1} \right)}^{8 - k}} = \sum\limits_{k = 0}^8 {C_8^k{3^k}{{\left( { - 1} \right)}^{8 - k}}{x^k}} } \).

Hệ số của \({x^5}\) trong khai triển \({\left( {3{\rm{x}} - 1} \right)^8}\) ứng với \(k = 5\) và bằng \(C_8^5{3^5}{\left( { - 1} \right)^{6 - 3}} = - 13608\)

\( \Rightarrow \)Hệ số của \({x^5}\) trong khai triển \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) là: \(240 - 13608 = - 13368\).

Lời giải

Đáp án B

Phương pháp:

Áp dụng công thức cộng và nhân xác suất.

Cách giải:

Xác suất để không có ai bắn trúng là: \(\left( {1 - 0,8} \right)\left( {1 - 0,6} \right) = 0,2.0,4 = 0,08\).

Xác suất để có ít nhất một người bắn trúng là: \(1 - 0,08 = 0,92\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(MN//\left( {SC{\rm{D}}} \right)\).
B. \(MN//\left( {SB{\rm{D}}} \right)\).
C. \(MN//\left( {SAP} \right)\).
D. \(MN//\left( {S{\rm{D}}P} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP