🔥 Đề thi HOT:

1369 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

26.8 K lượt thi 30 câu hỏi
723 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
533 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.8 K lượt thi 25 câu hỏi
487 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.2 K lượt thi 15 câu hỏi
384 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.8 K lượt thi 23 câu hỏi
312 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.4 K lượt thi 10 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Tập xác định của hàm số \(y = \sqrt[3]{{\sin 2{\rm{x}} - \tan x}}\) là:

Lời giải

Đáp án A.

Phương pháp:

\(\tan x\) xác định \( \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\left( {k \in \mathbb{Z}} \right)\).

Cách giải:

ĐKXĐ: \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\).

TXĐ: \(D = \left\{ {x \in \mathbb{R},\,x \ne \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\).

Câu 2

Có bao nhiêu cách chọn 6 học sinh đổi trực nhật từ một lớp 50 học sinh?

Lời giải

Đáp án C

Phương pháp:

Sử dụng công thức tổ hợp.

Cách giải:

Số cách chọn 6 học sinh đổi trực nhật từ một lớp 50 học sinh là: \(C_{50}^6\)

Lời giải

Đáp án D

Phương pháp:

Số đường chéo của một đa giác n đỉnh là \(C_n^2 - n,\,\,n \in \mathbb{N},\,\,n \ge 3\).

Cách giải:

Số đường chéo của một đa giác n đỉnh là \(C_n^2 - n,\,\,n \in \mathbb{N},\,\,n \ge 3\)

Theo đề bài, ta có: \(C_n^2 - n = 35 \Leftrightarrow \frac{{n\left( {n - 1} \right)}}{2} - n = 35 \Leftrightarrow {n^2} - 3n - 70 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 10\,\left( {TM} \right)\\n = - 7\,\left( L \right)\end{array} \right.\)

Vậy, đa giác đó có 10 đỉnh.

Câu 4

Trong hệ trục tọa độ Oxy, cho đường thẳng d có phương trình \(2{\rm{x}} - y + 1 = 0\), phép tịnh tiến theo vectơ \(\overrightarrow \nu \) biến d thành chính nó thì \(\overrightarrow \nu \) phải là vectơ nào trong các vectơ sau:

Lời giải

Đáp án A

Phương pháp:

Phép tịnh tiến theo \(\overrightarrow \nu \) biến đường thẳng d thành chính nó khi và chỉ khi vectơ \(\overrightarrow \nu \) có giá trị song song hoặc trùng với đường thẳng d.

Cách giải:

Đường thẳng d: \(2{\rm{x}} - y + 1 = 0\) có 1 VTCP: \(\overrightarrow u = \left( {1;\,2} \right)\)

Ta có: \(\overrightarrow \nu   = \left( {2;\,\,4} \right)\)cùng phương với \(\overrightarrow u = \left( {1;\,2} \right)\)\( \Rightarrow \overrightarrow \nu   = \left( {2;\,\,4} \right)\) có giá song song hoặc trùng với đường thẳng d

\( \Rightarrow \)Phép tịnh tiến theo vectơ \(\overrightarrow \nu   = \left( {2;\,\,4} \right)\) biến d thành chính nó.

Lời giải

Đáp án A

Phương pháp:

Áp dụng Công thức khai triển nhị thức Newton: \({\left( {x + y} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \).

Cách giải:

Hệ số của \({x^5}\) trong khai triển \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) bằng tổng hệ số của \({x^4}\) trong khai triển \({\left( {2{\rm{x}} - 1} \right)^6}\) và hệ số của \({x^5}\) trong khai triển \({\left( {3{\rm{x}} - 1} \right)^8}\).

+) \({\left( {2{\rm{x}} - 1} \right)^6} = \sum\limits_{i = 0}^6 {C_6^i{{\left( {2{\rm{x}}} \right)}^i}.{{\left( { - 1} \right)}^{6 - i}} = \sum\limits_{i = 0}^6 {C_6^i{2^i}{{\left( { - 1} \right)}^{6 - i}}{x^i}} } \).

Hệ số của \({x^4}\) trong khai triển \({\left( {2{\rm{x}} - 1} \right)^6}\) ứng với \(i = 4\) và bằng \(C_6^4{2^4}{\left( { - 1} \right)^{6 - 4}} = 240\).

+) \({\left( {{\rm{3x}} - 1} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( {3{\rm{x}}} \right)}^k}.{{\left( { - 1} \right)}^{8 - k}} = \sum\limits_{k = 0}^8 {C_8^k{3^k}{{\left( { - 1} \right)}^{8 - k}}{x^k}} } \).

Hệ số của \({x^5}\) trong khai triển \({\left( {3{\rm{x}} - 1} \right)^8}\) ứng với \(k = 5\) và bằng \(C_8^5{3^5}{\left( { - 1} \right)^{6 - 3}} = - 13608\)

\( \Rightarrow \)Hệ số của \({x^5}\) trong khai triển \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) là: \(240 - 13608 = - 13368\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 8

Tổng \(C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009}\) bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Tìm các giá trị của tham số m để phương trình \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m\) có nghiệm \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 11

Một lớp học có 30 học sinh được xếp thành một hàng dọc. Tính xác suất  để hai bạn An và Hà đứng cạnh nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 12

Cho tứ diện ABCD đều cạnh a. Gọi G là trọng tâm tam giác ABC, mặt phẳng (CGD) cắt tứ diện theo một thiết diện có diện tích là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 16

Cho hình chóp S.ABCD. Gọi M, N lần lượt là trọng tâm tam giác SAB, SAD. Gọi P là trung điểm của BC. Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

1855 Đánh giá

50%

40%

0%

0%

0%