Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 5)
25 người thi tuần này 4.6 9.3 K lượt thi 24 câu hỏi 90 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án D
Phương pháp:
Sử dụng định nghĩa về phép tịnh tiến trong mặt phẳng.
Cách giải:
Gọi \(M\left( {x;y} \right) \in \Delta ;{\rm{ }}{{\rm{T}}_{\overrightarrow n }}\left( M \right) = M'\left( {x';y'} \right) \in \Delta '\)
\( \Rightarrow \left\{ \begin{array}{l}x' = x - 1\\y' = y + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' + 1\\y = y' - 2\end{array} \right. \Rightarrow M\left( {x' + 1;y' - 2} \right) \in {\rm{d}}\)
\(M \in d \Rightarrow 2\left( {x' + 1} \right) - 3\left( {y' - 2} \right) - 5 = 0 \Leftrightarrow 2{\rm{x'}} - 3y' + 3 = 0\)
Vậy phương trình ảnh của đường thẳng Δ là: \(\Delta ' = 2{\rm{x}} - 3y + 3 = 0\).
Lời giải
Đáp án B
Phương pháp:
Sử dụng định nghĩa chỉnh hợp.
Cách giải:
Số cách lấy các số tự nhiên có bốn chữ số khác nhau từ tập X gồm 6 phần tử là: \(A_6^4\).
Lời giải
Đáp án A
Phương pháp:
Khai triển biểu thức, số hạng thứ 6 ứng với \(k = 5\) rồi tìm hệ số.
Cách giải:
Ta có: \({\left( {2{{\rm{x}}^2} + y} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k{{\left( {2{{\rm{x}}^2}} \right)}^{10 - k}}{y^k}} \). Số hạng thứ 6 ứng với \(k = 5\)
\( \Rightarrow C_{10}^5{\left( {2{{\rm{x}}^2}} \right)^{10 - 5}}{y^5} = {2^5}C_{10}^5{x^{10}}{y^5} = 8064{{\rm{x}}^{10}}{y^5}\). Hệ số là: 8064.
Lời giải
Đáp án D
Phương pháp:
Giải phương trình tìm nghiệm, kẹp nghiệm trong nửa khoảng đã cho tìm số nghiệm thỏa mãn.
Cách giải:
Ta có: \(\cos 2x = \frac{1}{2} \Leftrightarrow \cos 2x = \cos \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\2x = - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).
Trên nửa khoảng \(\left( {0^\circ ;360^\circ } \right]\) tức \(\left( {0;2\pi } \right]\). Ta sẽ có các nghiệm thỏa mãn như sau:
+) \(0 < x = \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow - \frac{1}{6} < k \le \frac{{11}}{6}\) mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1} \right\}\). Có 2 nghiệm.
+) \(0 < x = - \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow \frac{1}{6} < k \le \frac{{13}}{6}\) mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {1;2} \right\}\). Có 2 nghiệm.
Vậy có 4 nghiệm thỏa mãn yêu cầu bài toán.
Lời giải
Đáp án D
Phương pháp:
Vẽ hình sau đó sử dụng định lý Ta-lét trong tam giác.
Cách giải:
Trong \(\left( {ABN} \right)\) qua M kẻ đường thẳng song song với AI cắt BN tại J.
Xét tam giác MNJ ta có: \(\left\{ \begin{array}{l}GI{\rm{ // MJ}}\\{\rm{GN}} = GM\left( {gt} \right)\end{array} \right. \Rightarrow GI = \frac{1}{2}MJ\) (1).
Xét tam giác BAI ta có: \(\left\{ \begin{array}{l}{\rm{MJ // AI}}\\{\rm{MA}} = MB\end{array} \right. \Rightarrow MJ = \frac{1}{2}AI\) (2).
Từ (1) và (2) \( \Rightarrow GI = \frac{1}{4}AI \Leftrightarrow \frac{{GI}}{{GA}} = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
1855 Đánh giá
50%
40%
0%
0%
0%