Quảng cáo
Đáp án B
Phương pháp:
Sử dụng định nghĩa chỉnh hợp.
Cách giải:
Số cách lấy các số tự nhiên có bốn chữ số khác nhau từ tập X gồm 6 phần tử là: \(A_6^4\).
Cho hình chóp S.ABCD, đáy ABCD là hình thang có \(A{\rm{D // BC}}{\rm{, AB}} = BC = a\), \(BA{\rm{D}} = 60^\circ \).
a) Gọi M là trung điểm SD. Lấy điểm N nằm trên cạnh SA sao cho \(SN = 2NA\). Tìm giao điểm H của đường thẳng MN và mặt phẳng \(\left( {ABC{\rm{D}}} \right)\).
b) Gọi G là trọng tâm tam giác SAB. Mặt phẳng \(\left( \alpha \right)\) đi qua G và song song với hai đường thẳng AB, CD. Tính chu vi thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( \alpha \right)\).
Gọi 084 283 45 85
Hỗ trợ đăng ký khóa học tại Vietjack
về câu hỏi!