Câu hỏi:

31/01/2023 1,717

Trong mặt phẳng Oxy, cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 9\). Ảnh của đường tròn \(\left( C \right)\) qua phép vị tự tâm \(I\left( {3;2} \right)\), tỉ số 2 là đường tròn có phương trình?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Tìm ảnh của tâm I đường tròn, bán kính tăng 2 lần.

Cách giải:

Ta có: Tâm \(A\left( {1; - 2} \right)\), \(R = 3\) của \(\left( C \right)\). Khi đó bán kính mới là: \(R' = 3 \times 2 = 6\)

Lại có: \({V_{\left( {I;2} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {IA'} = 2\overrightarrow {IA} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} - 3 = 2\left( {1 - 3} \right)\\{y_{A'}} - 2 = 2\left( { - 3 - 2} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} = - 1\\{y_{A'}} = - 8\end{array} \right.\) nên \(A'\left( { - 1; - 8} \right)\).

Vậy ảnh của đường tròn \(\left( C \right)\)\({\left( {x + 1} \right)^2} + {\left( {y + 8} \right)^2} = 36\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

Xác định hai điểm chung của hai mặt phẳng.

Cách giải:

Xét \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) có:

+ S là điểm chung thứ nhất.

+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Media VietJack

Lời giải

Đáp án B

Phương pháp:

Sử dụng định nghĩa chỉnh hợp.

Cách giải:

Số cách lấy các số tự nhiên có bốn chữ số khác nhau từ tập X gồm 6 phần tử là: \(A_6^4\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP