Cho hình chóp S.ABC. Lấy hai điểm M, N lần lượt nằm trên các cạnh SB, AB sao cho \(\frac{{SM}}{{SB}} = \frac{1}{4}\) và \(NB = 3NA\). Khi đó, đường thẳng MN song song với mặt phẳng?
                                    
                                                                                                                        Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Đường thẳng song song với mặt phẳng khi và chỉ khi nó song song với đường thẳng bất kì trong mặt phẳng đó.
Cách giải:
Ta có: \(\frac{{SM}}{{SB}} = \frac{1}{4} \Rightarrow \frac{{BM}}{{B{\rm{S}}}} = \frac{3}{4};NB = 3NA \Rightarrow \frac{{BN}}{{BA}} = \frac{3}{4}\).
Xét tam giác BSA có: \(\frac{{BM}}{{B{\rm{S}}}} = \frac{{BN}}{{BA}} = \frac{3}{4} \Rightarrow MN{\rm{ // SA}}\) nên
\(MN{\rm{ // }}\left( {SAC} \right)\).

Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
 - Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
 - Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
 - Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp:
Xác định hai điểm chung của hai mặt phẳng.
Cách giải:
Xét \(\left( {SAB} \right)\) và \(\left( {SC{\rm{D}}} \right)\) có:
+ S là điểm chung thứ nhất.
+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)
\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.
Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Câu 2
Lời giải
Đáp án B
Phương pháp:
Phân số xác định khi mẫu số khác 0.
Cách giải:
ĐKXĐ: \(\cos 2x - 1 \ne 0 \Leftrightarrow \cos 2x \ne 1 \Leftrightarrow 2x \ne k2\pi \Leftrightarrow x \ne k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).
Vậy \(D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.