Câu hỏi:

31/01/2023 257

Số nghiệm của phương trình \(\cos 2x = \frac{1}{2}\) trên nửa khoảng \(\left( {0^\circ ;360^\circ } \right]\) là?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Giải phương trình tìm nghiệm, kẹp nghiệm trong nửa khoảng đã cho tìm số nghiệm thỏa mãn.

Cách giải:

Ta có: \(\cos 2x = \frac{1}{2} \Leftrightarrow \cos 2x = \cos \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\2x = - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).

Trên nửa khoảng \(\left( {0^\circ ;360^\circ } \right]\) tức \(\left( {0;2\pi } \right]\). Ta sẽ có các nghiệm thỏa mãn như sau:

+) \(0 < x = \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow - \frac{1}{6} < k \le \frac{{11}}{6}\)\(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1} \right\}\). Có 2 nghiệm.

+) \(0 < x = - \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow \frac{1}{6} < k \le \frac{{13}}{6}\)\(k \in \mathbb{Z} \Rightarrow k \in \left\{ {1;2} \right\}\). Có 2 nghiệm.

Vậy có 4 nghiệm thỏa mãn yêu cầu bài toán.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi O là giao điểm của ACBD, M là giao điểm của ABCD, N là giao điểm của ADBC. Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) là?

Xem đáp án » 31/01/2023 5,376

Câu 2:

Từ các chữ số của tập \(X = \left\{ {1;2;4;5;7;8} \right\}\) có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau?

Xem đáp án » 31/01/2023 2,874

Câu 3:

Tập xác định của hàm số \(y = \frac{{\sin x + 1}}{{\cos 2x - 1}}\) là?

Xem đáp án » 31/01/2023 2,709

Câu 4:

Cho hình chóp S.ABC. Lấy hai điểm M, N lần lượt nằm trên các cạnh SB, AB sao cho \(\frac{{SM}}{{SB}} = \frac{1}{4}\)\(NB = 3NA\). Khi đó, đường thẳng MN song song với mặt phẳng?

Xem đáp án » 31/01/2023 2,182

Câu 5:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. G là trung điểm của MN, I là giao điểm của đường thẳng AG và mặt phẳng \(\left( {BC{\rm{D}}} \right)\). Tính tỉ số \(\frac{{GI}}{{GA}}\)?

Xem đáp án » 31/01/2023 2,057

Câu 6:

Tìm tất cả giá trị của tham số m để phương trình \(\sin 3{\rm{x}} - m = 0\) có nghiệm?

Xem đáp án » 31/01/2023 1,322

Câu 7:

Trong mặt phẳng Oxy, cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 9\). Ảnh của đường tròn \(\left( C \right)\) qua phép vị tự tâm \(I\left( {3;2} \right)\), tỉ số 2 là đường tròn có phương trình?

Xem đáp án » 31/01/2023 979
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua