Câu hỏi:

31/01/2023 274

Số nghiệm của phương trình \(\cos 2x = \frac{1}{2}\) trên nửa khoảng \(\left( {0^\circ ;360^\circ } \right]\) là?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Giải phương trình tìm nghiệm, kẹp nghiệm trong nửa khoảng đã cho tìm số nghiệm thỏa mãn.

Cách giải:

Ta có: \(\cos 2x = \frac{1}{2} \Leftrightarrow \cos 2x = \cos \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\2x = - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).

Trên nửa khoảng \(\left( {0^\circ ;360^\circ } \right]\) tức \(\left( {0;2\pi } \right]\). Ta sẽ có các nghiệm thỏa mãn như sau:

+) \(0 < x = \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow - \frac{1}{6} < k \le \frac{{11}}{6}\)\(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1} \right\}\). Có 2 nghiệm.

+) \(0 < x = - \frac{\pi }{6} + k\pi \le 2\pi \Leftrightarrow \frac{1}{6} < k \le \frac{{13}}{6}\)\(k \in \mathbb{Z} \Rightarrow k \in \left\{ {1;2} \right\}\). Có 2 nghiệm.

Vậy có 4 nghiệm thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

Xác định hai điểm chung của hai mặt phẳng.

Cách giải:

Xét \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) có:

+ S là điểm chung thứ nhất.

+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Media VietJack

Lời giải

Đáp án B

Phương pháp:

Sử dụng định nghĩa chỉnh hợp.

Cách giải:

Số cách lấy các số tự nhiên có bốn chữ số khác nhau từ tập X gồm 6 phần tử là: \(A_6^4\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP