Câu hỏi:

31/01/2023 216

Tìm số hạng không chứa x trong khai triển của biểu thức \({\left( {{x^2} - \frac{2}{{{x^2}}}} \right)^n}\) biết

\(3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535\) với \(n \in {\mathbb{N}^*},x \ne 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

+) Tìm n thông qua dữ kiện đề bài cho.

+) Tìm hệ số không chứa x dựa vào khai triển nhị thức Newton.

Cách giải:

Ta có: \(3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535\)

\( \Leftrightarrow {3^0}C_n^0 + 3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535 + {3^0}C_n^0\)

\( \Leftrightarrow {\left( {3 + 1} \right)^n} = 65535 \Leftrightarrow {4^n} = 65535 \Leftrightarrow n = 8\).

Khai triển với \(n = 8\) ta được:

\({\left( {{x^2} - \frac{2}{{{x^2}}}} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( {{x^2}} \right)}^{8 - k}}.{{\left( { - 2} \right)}^k}.{{\left( {{x^{ - 2}}} \right)}^k}} = \sum\limits_{k = 0}^8 {{{\left( { - 2} \right)}^k}.C_8^k.{x^{16 - 4k}}} \)

Khi đó số hạng không chứa x ứng với:

\(16 - 4k = 0 \Leftrightarrow k = 4\), nên hệ số là: \({\left( { - 2} \right)^4}.C_8^4 = 1120\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

Xác định hai điểm chung của hai mặt phẳng.

Cách giải:

Xét \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) có:

+ S là điểm chung thứ nhất.

+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Media VietJack

Lời giải

Đáp án B

Phương pháp:

Sử dụng định nghĩa chỉnh hợp.

Cách giải:

Số cách lấy các số tự nhiên có bốn chữ số khác nhau từ tập X gồm 6 phần tử là: \(A_6^4\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP