Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 4)
30 người thi tuần này 4.6 9.3 K lượt thi 23 câu hỏi 90 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án A
Phương pháp:
- Tứ diện là hình có 4 đỉnh không đồng phẳng.
- Sử dụng tổ hợp.
Cách giải:
Chọn 4 điểm từ 10 điểm ta được 1 hình tứ diện.
Vậy số tứ diện có thể kẻ được là \(C_{10}^4 = 210\).
Lời giải
Đáp án C
Phương pháp:
- Sử dụng khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \].
- Sử dụng công thức \[C_n^k = C_n^{n = k}\].
Cách giải:
Ta có: \[{\left( {{x^2} + x} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k{{\left( {{x^2}} \right)}^k}.{x^{10 - k}}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{10 + k}}{\rm{ }}} \left( {0 \le k \le 10;{\rm{ }}k \in \mathbb{N}} \right)\].
Số hạng chứa \[{x^{12}}\] ứng với \[10 + k = 2 \Leftrightarrow k = 2\left( {tm} \right)\].
Vậy hệ số của \[{x^{12}}\] trong khai triển trên là \[C{\kern 1pt} _{10}^2 = C_{10}^8\].
Lời giải
Đáp án A
Phương pháp:
\[\left\{ \begin{array}{l}a||b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a||\left( P \right)\]
Cách giải:
Vì \(MN\) là đường trung bình của tam giác \(SAC\).
\( \Rightarrow MN||AC\) (Tính chất đường trung bình).
Mà \[AC \subset \left( {ABCD} \right) \Rightarrow MN||\left( {ABCD} \right)\].Lời giải
Đáp án A
Phương pháp:
Phép tính tiến biến đường thẳng thành đường thẳng song song với nó.
Cách giải:
Vì \(\Delta = {T_{\overrightarrow u }}\left( d \right) \Rightarrow \Delta ||d\) Þ Phương trình \(\Delta \) có dạng: \(x - 2y + c = 0\left( \Delta \right)\).
Lấy \(A\left( {1;0} \right)\) bất kì thuộc \(d\). Gọi \(A' = {T_{\overrightarrow u }}\left( A \right) \Rightarrow A' \in \Delta \).
Ta có: \(A' \in {T_{\overrightarrow u }}\left( A \right) \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_A} + {x_{\overrightarrow u }} = 1 + 4 = 5\\{y_{A'}} = {y_A} + {y_{\overrightarrow u }} = 0 + 3 = 3\end{array} \right. \Rightarrow A'\left( {5;3} \right)\).
Vì \(A' \in \Delta \Rightarrow 5 - 2.3 + c = 0 \Leftrightarrow c = 1\).
Vậy phương trình đường thẳng \(\Delta \) là: \(x - 2y + 1 = 0\).
Lời giải
Đáp án C
Phương pháp:
Vẽ hình và xác định ảnh của hai điểm \(C,\,\,D\) qua phép quay tâm \(O\), góc quay \( - 90^\circ \).
Cách giải:
Vì \(ABCD\) là hình vuông nên \(OA = OB = OC = OD\) và \(AC \bot BD\) tại \(O\).
Khi đó ta có: \({Q_{\left( {O; - 90^\circ } \right)}}\left( C \right) = D,{\rm{ }}{Q_{\left( {O; - 90^\circ } \right)}}\left( D \right) = A\).
Vậy \({Q_{\left( {O; - 90^\circ } \right)}}\left( {CD} \right) = DA\).
Chú ý: Phép quay góc có giá trị âm là phép quay cùng chiều kim đồng hồ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
1855 Đánh giá
50%
40%
0%
0%
0%