Câu hỏi:

30/01/2023 967

Nghiệm của phương trình \(\sin x + \sqrt 3 \cos x = 2\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Phương pháp giải phương trình \(a\sin x + b\cos x = c\).

- Chia cả 2 vế phương trình cho \(\sqrt {{a^2} + {b^2}} \).

- Đặt \(\frac{a}{{\sqrt {{a^2} + {b^2}} }} = \cos \alpha ,{\rm{ }}\frac{b}{{\sqrt {{a^2} + {b^2}} }} = \sin \alpha \).

- Sử dụng công thức \(\sin x\cos \alpha + \cos x\sin \alpha = \sin \left( {x + \alpha } \right)\), đưa phương trình về dạng phương trình lượng giác cơ bản và giải.

Cách giải:

\(\sin x + \sqrt 3 \cos x = 2 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = 1\)

\( \Leftrightarrow \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = 1\)

\( \Leftrightarrow x + \frac{\pi }{3} = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{6} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Sử dụng lý thuyết các hàm số lượng giác.

Cách giải:

Media VietJack

Dựa vào đồ thị hàm số \(y = \cos x\) ta thấy hàm số đồng biến trên \(\left( { - \pi ;0} \right)\).

Lời giải

Đáp án A

Phương pháp:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

- Chọn lần lượt từng chữ số.

- Áp dụng quy tắc nhân.

Cách giải:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

Chọn \(a\) có 6 cách.

Chọn \(b,c,d\) mỗi chữ số có 7 cách chọn.

Vậy có \({6.7^3} = 2058\) số.

Chú ý: Đề bài không yêu cầu các chữ số đôi một khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP