Câu hỏi:

12/07/2024 3,842

Mỗi tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Sử dụng biến cố đối.

Cách giải:

Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật n(Ω)=C113=165.

Gọi A là biến cố: “3 học sinh được chọn có cả nam và nữ”.

A¯: “3 học sinh được chọn hoặc toàn là nam, hoặc toàn là nữ”.

Chọn 3 học sinh toàn là nam có C53 cách.

Chọn 3 học sinh toàn là nữ có C63 cách.

n(A¯)=C53+C63=30.

Vậy P(A)=1P(A¯)=130165=911.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số y=cosx đồng biến trên khoảng nào dưới đây?

Xem đáp án » 30/01/2023 7,082

Câu 2:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên có 4 chữ số?

Xem đáp án » 30/01/2023 5,159

Câu 3:

Cho hình chóp S.ABCD có đáy là hình thang, AD là đáy lớn thỏa mãn AD=2BC. Các điểm M,N lần lượt là trung điểm của các cạnh SA,SD.

     a) Chứng minh đường thẳng MN song song với mặt phẳng (SBC).

     b) Mặt phẳng (MCD) cắt SB tại E. Tính tỉ số SEEB.

Xem đáp án » 12/07/2024 2,567

Câu 4:

Cho hình chóp S.ABCDABCD là hình thang cân đáy lớn AD. Gọi M, N, P lần lượt là trung điểm của AB, CD, SB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (MNP)

Xem đáp án » 30/01/2023 1,978

Câu 5:

Số nghiệm của phương trình 2cosx+1=0 thuộc khoảng (π;4π) là:

Xem đáp án » 30/01/2023 1,879

Câu 6:

Từ các số 1, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau?

Xem đáp án » 30/01/2023 1,697
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua