Câu hỏi:

30/01/2023 1,839

Gieo ngẫu nhiên 3 con súc sắc cân đối, đồng chất. Xác suất để tích số chấm xuất hiện trên ba con súc sắc là một số tự nhiên chẵn là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

- Tích ba số là số chẵn khi và chỉ khi trong ba số có ít nhất một số chẵn.

- Sử dụng biến cố đối.

Cách giải:

Gieo ngẫu nhiên 3 con súc sắc cân đối, đồng chất \( \Rightarrow n\left( \Omega \right) = {6^3} = 216\).

Gọi A là biến cố: “tích số chấm xuất hiện trên ba con súc sắc là một số tự nhiên chẵn” Þ Trong ba lần gieo có ít nhất 1 lần xuất hiện mặt chẵn chấm.

\( \Rightarrow \overline A \): “Cả 3 lần gieo đều xuất hiện mặt lẻ chấm” \( \Rightarrow n\left( {\overline A } \right) = {3^3} = 27\).

Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{27}}{{216}} = \frac{7}{8}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số \(y = \cos x\) đồng biến trên khoảng nào dưới đây?

Xem đáp án » 30/01/2023 7,126

Câu 2:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên có 4 chữ số?

Xem đáp án » 30/01/2023 5,899

Câu 3:

Mỗi tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.

Xem đáp án » 12/07/2024 5,261

Câu 4:

Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AD\) là đáy lớn thỏa mãn \(AD = 2BC\). Các điểm \(M,N\) lần lượt là trung điểm của các cạnh \(SA,\,\,SD\).

     a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SBC} \right)\).

     b) Mặt phẳng \(\left( {MCD} \right)\) cắt \(SB\) tại \(E\). Tính tỉ số \(\frac{{SE}}{{EB}}\).

Xem đáp án » 12/07/2024 2,587

Câu 5:

Số nghiệm của phương trình \(2\cos x + 1 = 0\) thuộc khoảng \(\left( { - \pi ;4\pi } \right)\) là:

Xem đáp án » 30/01/2023 2,011

Câu 6:

Cho hình chóp S.ABCDABCD là hình thang cân đáy lớn AD. Gọi M, N, P lần lượt là trung điểm của AB, CD, SB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( {MNP} \right)\)

Xem đáp án » 30/01/2023 2,002
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay