Câu hỏi:

30/01/2023 242

Hệ số của \({x^5}\) trong khai triển \(P\left( x \right) = x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Sử dụng khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \].

Cách giải:

\(P\left( x \right) = x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)

\(P\left( x \right) = x\sum\limits_{m = 0}^5 {C_5^m{{\left( { - 2} \right)}^m}{x^m}} + {x^2}\sum\limits_{n = 0}^{10} {C_{10}^n{3^n}{x^n}} \)

\(P\left( x \right) = \sum\limits_{m = 0}^5 {C_5^m{{\left( { - 2} \right)}^m}{x^{m + 1}}} + \sum\limits_{n = 0}^{10} {C_{10}^n{3^n}{x^{n + 2}}} \)

Số hạng chứa \({x^5}\) ứng với \(\left\{ \begin{array}{l}m + 1 = 5\\n + 2 = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 4\\n = 3\end{array} \right.\).

Vậy hệ số của số hạng chứa \({x^5}\) trong khai triển trên là \(C_5^4.{\left( { - 2} \right)^4} + C_{10}^3{.3^3} = 3320\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hàm số \(y = \cos x\) đồng biến trên khoảng nào dưới đây?

Lời giải

Đáp án D

Phương pháp:

Sử dụng lý thuyết các hàm số lượng giác.

Cách giải:

Media VietJack

Dựa vào đồ thị hàm số \(y = \cos x\) ta thấy hàm số đồng biến trên \(\left( { - \pi ;0} \right)\).

Lời giải

Đáp án A

Phương pháp:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

- Chọn lần lượt từng chữ số.

- Áp dụng quy tắc nhân.

Cách giải:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

Chọn \(a\) có 6 cách.

Chọn \(b,c,d\) mỗi chữ số có 7 cách chọn.

Vậy có \({6.7^3} = 2058\) số.

Chú ý: Đề bài không yêu cầu các chữ số đôi một khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay