Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 7)
61 người thi tuần này 4.6 9.3 K lượt thi 27 câu hỏi 90 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án B
Phương pháp:
+ Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].
+ Chọn từng chữ số, sau đó áp dụng quy tắc nhân.
Cách giải:
Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].
+ Số cần lập là số chẵn \[ \Rightarrow d \in \left\{ {2;4;6} \right\} \Rightarrow \] Có 3 cách chọn \[d\].
+ Ứng với mỗi cách chọn \[d\] có \[A_5^3 = 60\] cách chọn 3 chữ số \[a,b,c\].
Áp dụng quy tắc nhân ta có: \[3.60 = 180\] số thỏa mãn.
Lời giải
Đáp án D
Phương pháp:
Giải phương trình lượng giác cơ bản \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\].
Cách giải:
\[\tan 2x + \sqrt 3 = 0 \Leftrightarrow \tan 2x = - \sqrt 3 \Leftrightarrow 2x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{6} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\]
Lời giải
Đáp án C
Phương pháp:
+ Tính số phân tử của không gian mẫu.
+ Tính số phân tử của biến cố.
+ Tính xác suất của biến cố.
Cách giải:
+ Chọn ngẫu nhiên đồng thời 3 quả cầu \[ \Rightarrow n\left( \Omega \right) = C_{17}^3 = 680\].
+ Gọi A là biến cố: “Lấy được 3 quả cầu màu xanh” \[ \Rightarrow n\left( A \right) = C_5^3 = 10\]
Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{680}} = \frac{1}{{68}}\]
Lời giải
Đáp án C
Phương pháp:
Cho \[M\left( {x;y} \right)\] và \[\overrightarrow u = \left( {a;b} \right)\], gọi \[M'\left( {x';y'} \right) = {T_{\overrightarrow u }}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\]
Cách giải:
\[{T_{\overrightarrow u }}\left( A \right) = B \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 2 + 1 = 3\\{y_B} = - 4 - 2 = - 6\end{array} \right. \Rightarrow B\left( {3; - 6} \right)\].
Lời giải
Đáp án D
Phương pháp:
+ Sử dụng định nghĩa phép vị tự: \[{V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \]
+ Sử dụng tính chất phép vị tự: Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
Cách giải:
Gọi \[d' = {V_{\left( {O;2} \right)}}\left( d \right) \Rightarrow d'//d \Rightarrow \] Phương trình \[d'\] có dạng \[3x - 2y + c = 0\].
Lấy \[A\left( { - 1;1} \right) \in d\]. Gọi \[A' = {V_{\left( {O;2} \right)}} \Rightarrow \overrightarrow {OA'} = 2\overrightarrow {OA} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2.\left( { - 1} \right) = - 2\\{y_{A'}} = 2.\left( { - 1} \right) = - 2\end{array} \right. \Rightarrow A'\left( { - 2; - 2} \right)\].
Vì \[A' \in d' \Rightarrow 3.\left( { - 2} \right) - 2.\left( { - 2} \right) + c = 0 \Leftrightarrow c = 2\].
Vậy \[d':3x - 2y + 2 = 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
1855 Đánh giá
50%
40%
0%
0%
0%