Câu hỏi:

31/01/2023 321

Trong mặt phẳng \[Oxy\], cho \[\overrightarrow u = \left( {1; - 2} \right)\]\[A\left( {2; - 4} \right)\]. Phép tịnh tiến theo vectơ \[\overrightarrow u \] biến điểm \[A\] thành điểm \[B\] có tọa độ là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Cho \[M\left( {x;y} \right)\]\[\overrightarrow u = \left( {a;b} \right)\], gọi \[M'\left( {x';y'} \right) = {T_{\overrightarrow u }}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\]

Cách giải:

\[{T_{\overrightarrow u }}\left( A \right) = B \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 2 + 1 = 3\\{y_B} = - 4 - 2 = - 6\end{array} \right. \Rightarrow B\left( {3; - 6} \right)\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]\[{u_n} = {u_1} + \left( {n - 1} \right)d\]

Cách giải:

Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]

\[{u_n} = 3 + \left( {n - 1} \right)2 = 3 + 2n - 2 = 2n + 1\]

Lời giải

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Phương pháp:

Sử dụng biến cố đối.

Cách giải:

Lấy ngẫu nhiên 6 viên bi \[ \Rightarrow n\left( \Omega \right) = C_{21}^6 = 54264\].

Gọi A là biến cố: “Lấy được ít nhất 3 viên bi đỏ” \[ \Rightarrow \overline A \]: “Lấy được ít hơn 3 viên bi đỏ”.

TH1: 0 bi đỏ + 6 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^0.C_{15}^6 = 5005\] cách.

TH2: 1 bi đỏ + 5 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^1.C_{15}^5 = 18018\] cách.

TH3: 2 bi đỏ + 4 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^2.C_{15}^4 = 20475\] cách.

Áp dụng quy tắc cộng ta có \[n\left( {\overline A } \right) = 5005 + 18018 + 20475 = 43498\].

Vậy \[P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{43498}}{{54264}} = \frac{{769}}{{3876}}\].

Câu 3

Chọn khẳng định SAI.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay