Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?
Quảng cáo
Trả lời:
Phương pháp:
+ Tính số phần tử của không gian mẫu.
+ Tính số phần tử của biến cố.
+ Tính xác suất của biến cố.
Cách giải:

Chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right) \Rightarrow n\left( \Omega \right) = C_{36}^4 = 58905\].
Giả sử \[{A_1},{A_2},{A_3},...,{A_{36}}\] là 36 đỉnh của đa giác đều \[\left( H \right)\]. Gọi \[O\] là tâm của đa giác đều \[\left( H \right)\].
\[ \Rightarrow {A_1}{A_2}...{A_{36}}\] là đa giác đều ngoại tiếp đường tròn \[\left( O \right)\].
Khi đó ta có \[{A_i}O{A_{i + 1}} = \frac{{360^\circ }}{{36}} = 10^\circ \,\,\forall i = \overline {1;36} \].
Để \[{A_x}{A_y}{A_z}{A_t}\] là hình vuông thì \[{A_x}O{A_y} = {A_y}O{A_z} = {A_z}O{A_t} = {A_t}O{A_x} = 90^\circ \].
Ta có \[{O_1}O{A_{10}} = {A_{10}}O{A_{19}} = {A_{19}}O{A_{28}} = {A_{28}}O{A_1} = 90^\circ \Rightarrow {A_1}{A_{10}}{A_{19}}{A_{28}}\] là 1 hình vuông.
Cứ như vậy ta có các hình vuông là \[{A_2}{A_{11}}{A_{20}}{A_{29}},\,\,{A_3}{A_{12}}{A_{21}}{A_{30}},...,{A_9}{A_{18}}{A_{27}}{A_{36}}\].
Gọi A là biến cố: “4 đỉnh được chọn tạo thành hình vuông” \[ \Rightarrow n\left( A \right) = 9\].
Vậy \[P\left( A \right) = \frac{9}{{58905}} = \frac{1}{{6564}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án B
Phương pháp:
Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\] là \[{u_n} = {u_1} + \left( {n - 1} \right)d\]
Cách giải:
Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\] là
\[{u_n} = 3 + \left( {n - 1} \right)2 = 3 + 2n - 2 = 2n + 1\]
Câu 2
Lời giải
Đáp án A
Phương pháp:
Các cách xác định mặt phẳng là:
+ Qua ba điểm không thẳng hàng.
+ Qua một điểm và một đường thẳng không đi qua điểm đó.
+ Qua hai đường thẳng cắt nhau.
+ Qua hai đường thẳng song song.
Cách giải:
Khẳng định sai là đáp án A: Qua ba điểm phân biệt xác định được một và chỉ một mặt phẳng.
Khẳng định đúng phải là: Qua ba điểm phân biệt không thẳng hàng xác định được một và chỉ một mặt phẳng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.