Câu hỏi:

13/07/2024 4,207

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Phương pháp:

Sử dụng biến cố đối.

Cách giải:

Lấy ngẫu nhiên 6 viên bi \[ \Rightarrow n\left( \Omega \right) = C_{21}^6 = 54264\].

Gọi A là biến cố: “Lấy được ít nhất 3 viên bi đỏ” \[ \Rightarrow \overline A \]: “Lấy được ít hơn 3 viên bi đỏ”.

TH1: 0 bi đỏ + 6 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^0.C_{15}^6 = 5005\] cách.

TH2: 1 bi đỏ + 5 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^1.C_{15}^5 = 18018\] cách.

TH3: 2 bi đỏ + 4 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^2.C_{15}^4 = 20475\] cách.

Áp dụng quy tắc cộng ta có \[n\left( {\overline A } \right) = 5005 + 18018 + 20475 = 43498\].

Vậy \[P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{43498}}{{54264}} = \frac{{769}}{{3876}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:

Xem đáp án » 31/01/2023 6,200

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\]\[BD\]. \[M\]\[N\] lần lượt là trung điểm của \[CD\]\[SA\]. \[G\] là trọng tâm tam giác \[SAB\].

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\].

2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].

3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\]\[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\]\[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.

Xem đáp án » 12/07/2024 5,200

Câu 3:

Chọn khẳng định SAI.

Xem đáp án » 31/01/2023 5,144

Câu 4:

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Xem đáp án » 31/01/2023 3,858

Câu 5:

2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].

Xem đáp án » 13/07/2024 2,725

Câu 6:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Xem đáp án » 31/01/2023 2,596

Bình luận


Bình luận
Vietjack official store