Câu hỏi:

13/07/2024 2,741

2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2) \[\sqrt 3 \sin x - \cos x + 2 = 0\].

Phương pháp:

Chia cả hai vế của phương trình cho \[\sqrt {{a^2} + {b^2}} \].

Cách giải: 

\[\sqrt 3 \sin x - \cos x + 2 = 0 \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x - \frac{1}{2}\cos x = - 1\]

\[ \Leftrightarrow \sin x\cos \frac{\pi }{6} - \cos x\sin \frac{\pi }{6} = - 1 \Leftrightarrow \sin \left( {x - \frac{\pi }{6}} \right) = - 1\]

\[ \Leftrightarrow x - \frac{\pi }{6} = - \frac{\pi }{2} + k2\pi \Leftrightarrow x = - \frac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:

Xem đáp án » 31/01/2023 6,342

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\]\[BD\]. \[M\]\[N\] lần lượt là trung điểm của \[CD\]\[SA\]. \[G\] là trọng tâm tam giác \[SAB\].

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\].

2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].

3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\]\[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\]\[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.

Xem đáp án » 12/07/2024 5,256

Câu 3:

Chọn khẳng định SAI.

Xem đáp án » 31/01/2023 5,227

Câu 4:

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Xem đáp án » 13/07/2024 4,416

Câu 5:

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Xem đáp án » 31/01/2023 3,896

Câu 6:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Xem đáp án » 31/01/2023 2,622

Bình luận


Bình luận
Vietjack official store