Câu hỏi:

31/01/2023 124

Trong mặt phẳng \[\left( {O,\overrightarrow i ,\overrightarrow j } \right)\], cho đường tròn \[(C):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 4\]. Đường tròn \[\left( {C'} \right)\] là ảnh của \[\left( C \right)\] qua phép tịnh tiến theo vectơ \[\overrightarrow i \] có phương trình là:

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

+ Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.

+ Xác định tâm \[I\] và bán kính \[R\] của đường tròn \[\left( C \right)\].

+ Gọi \[I' = {T_i}\left( I \right)\], xác định tọa độ điểm \[I'\].

+ Gọi \[\left( {C'} \right) = {T_i}\left( C \right) \Rightarrow \left( {C'} \right)\] là đường tròn có tâm \[I'\] và bán kính \[R\].

Cách giải:

+ Đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 4\] có tâm \[I\left( {1; - 3} \right)\] và bán kính \[R = 2\].

+ Gọi \[I' = {T_i}\left( I \right) \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = 1 + 1 = 2\\{y_{I'}} = - 3 + 0 = - 3\end{array} \right. \Rightarrow I'\left( {2; - 3} \right)\]

+ Gọi \[\left( {C'} \right) = {T_i}\left( C \right) \Rightarrow \left( {C'} \right)\] là đường tròn có tâm \[I'\left( {2; - 3} \right)\] và bán kính \[R = 2\].

Vậy phương trình đường tròn \[\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:

Xem đáp án » 31/01/2023 6,344

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\]\[BD\]. \[M\]\[N\] lần lượt là trung điểm của \[CD\]\[SA\]. \[G\] là trọng tâm tam giác \[SAB\].

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\].

2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].

3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\]\[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\]\[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.

Xem đáp án » 12/07/2024 5,256

Câu 3:

Chọn khẳng định SAI.

Xem đáp án » 31/01/2023 5,228

Câu 4:

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Xem đáp án » 13/07/2024 4,421

Câu 5:

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Xem đáp án » 31/01/2023 3,897

Câu 6:

2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].

Xem đáp án » 13/07/2024 2,742

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Xem đáp án » 31/01/2023 2,623

Bình luận


Bình luận
Vietjack official store