Câu hỏi:

31/01/2023 104

Trong mặt phẳng \[\left( {O,\overrightarrow i ,\overrightarrow j } \right)\], cho đường tròn \[(C):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 4\]. Đường tròn \[\left( {C'} \right)\] là ảnh của \[\left( C \right)\] qua phép tịnh tiến theo vectơ \[\overrightarrow i \] có phương trình là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

+ Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.

+ Xác định tâm \[I\] và bán kính \[R\] của đường tròn \[\left( C \right)\].

+ Gọi \[I' = {T_i}\left( I \right)\], xác định tọa độ điểm \[I'\].

+ Gọi \[\left( {C'} \right) = {T_i}\left( C \right) \Rightarrow \left( {C'} \right)\] là đường tròn có tâm \[I'\] và bán kính \[R\].

Cách giải:

+ Đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 4\] có tâm \[I\left( {1; - 3} \right)\] và bán kính \[R = 2\].

+ Gọi \[I' = {T_i}\left( I \right) \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = 1 + 1 = 2\\{y_{I'}} = - 3 + 0 = - 3\end{array} \right. \Rightarrow I'\left( {2; - 3} \right)\]

+ Gọi \[\left( {C'} \right) = {T_i}\left( C \right) \Rightarrow \left( {C'} \right)\] là đường tròn có tâm \[I'\left( {2; - 3} \right)\] và bán kính \[R = 2\].

Vậy phương trình đường tròn \[\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:

Xem đáp án » 31/01/2023 4,376

Câu 2:

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Xem đáp án » 13/07/2024 4,009

Câu 3:

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Xem đáp án » 31/01/2023 3,219

Câu 4:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\]\[BD\]. \[M\]\[N\] lần lượt là trung điểm của \[CD\]\[SA\]. \[G\] là trọng tâm tam giác \[SAB\].

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\].

2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].

3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\]\[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\]\[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.

Xem đáp án » 12/07/2024 3,025

Câu 5:

2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].

Xem đáp án » 13/07/2024 2,605

Câu 6:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Xem đáp án » 31/01/2023 2,121

Câu 7:

Chọn khẳng định SAI.

Xem đáp án » 31/01/2023 1,716

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store