Câu hỏi:
31/01/2023 762Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
+ Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].
+ Chọn từng chữ số, sau đó áp dụng quy tắc nhân.
Cách giải:
Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].
+ Số cần lập là số chẵn \[ \Rightarrow d \in \left\{ {2;4;6} \right\} \Rightarrow \] Có 3 cách chọn \[d\].
+ Ứng với mỗi cách chọn \[d\] có \[A_5^3 = 60\] cách chọn 3 chữ số \[a,b,c\].
Áp dụng quy tắc nhân ta có: \[3.60 = 180\] số thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 4:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\] và \[BD\]. \[M\] và \[N\] lần lượt là trung điểm của \[CD\] và \[SA\]. \[G\] là trọng tâm tam giác \[SAB\].
1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\].
2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].
3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\] và \[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.
Câu 5:
2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].
Câu 6:
về câu hỏi!