Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Tập xác định của hàm số \[y = \frac{{\sin {\mkern 1mu} x + \cos x}}{{\tan {\mkern 1mu} x}}\] là:

Xem đáp án

Câu 1:

Phương trình \[{\sin ^2}x = 1\] tương đương với phương trình nào sau đây?

Xem đáp án

Câu 2:

Trên khoảng \[\left( { - \frac{{3\pi }}{4};\frac{\pi }{4}} \right)\] tập giá trị của hàm số \[y = \cos x\] là:

Xem đáp án

Câu 4:

Gọi S là tập hợp tất cả các số thực m để phương trình \[4{\cos ^3}x + 2\cos 2x + 2 = \left( {m + 3} \right)\cos x\] có đúng 5 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]. Kết luận nào sau đây đúng?

Xem đáp án

Câu 5:

Từ các chữ số 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có các chữ số đôi một khác nhau?

Xem đáp án

Câu 7:

Rút ngẫu nhiên 8 quân bài từ 1 bộ tú lơ khơ 52 quân. Xác suất lấy được 5 quân màu đỏ là:

Xem đáp án

Câu 8:

Hệ số của số hạng chứa \[{x^{17}}\] trong khai triển \[{\left( {{x^2} - 2x} \right)^{10}}\]

Xem đáp án

Câu 9:

Tính tổng \[S = {\left( {C_{2017}^0} \right)^2} + {\left( {C_{2017}^1} \right)^2} + {\left( {C_{2017}^2} \right)^2} + ... + {\left( {C_{2017}^{2017}} \right)^2}\].

Xem đáp án

Câu 10:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Phát biểu nào sau đây SAI?

Xem đáp án

Câu 12:

Cho hình thang ABCD có \[\overrightarrow {DC} = \frac{1}{2}\overrightarrow {AB} \]. Gọi I là giao điểm của hai đường chéo AC và BD. Phép vị tự nào dưới đây biến đường thẳng AB thành đường thẳng CD?

Xem đáp án

Câu 14:

Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?

Xem đáp án

4.6

1339 Đánh giá

50%

40%

0%

0%

0%