Câu hỏi:

05/02/2023 2,188 Lưu

Có bao nhiêu cách sắp xếp 6 học sinh lớp 11 và 3 học sinh lớp 12 vào một hàng ghế dài gồm 9 ghế sao cho mỗi học sinh lớp 12 ngồi giữa 2 học sinh lớp 11?

A. \[6!.C_5^3\]
B. \[6!.A_5^3\]
C. \[A_9^6.A_5^3\]
D. \[3!.6!\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp giải:

Áp dụng quy tắc nhân và quy tắc vách ngăn.

Giải chi tiết:

Xếp 6 học sinh lớp 11 thành 1 hàng có 6! cách

Khi đó, tạo ra 5 vách ngăn 6 học sinh này. Xếp 3 học sinh lớp 12 vào 5 vách ngăn đó (không có học sinh nào vào cùng 1 vách ngăn), có: \[A_5^3\] cách

Có tất cả \[6!.A_5^3\] cách xếp thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải chi tiết:

Media VietJack

a) Trong (ABCD), gọi \[I = MN \cap AD,\]\[J = MN \cap CD\], \[F = MN \cap BD\]

Trong (SBD), gọi \[K = EF \cap SD\]

Trong (SAD), gọi \[Q = IK \cap SA\]

Trong (SAD), gọi \[P = JK \cap SC\]

Khi đó, thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\] là ngũ giác \[MNPKQ\]

b) MN là đường trung bình của \[\Delta ABC \Rightarrow MN//AC\]

\[ \Rightarrow MF{\rm{//}}AC \Rightarrow \] F là trung điểm của OB \[ \Rightarrow BF = \frac{1}{2}OB = \frac{1}{4}BD \Rightarrow BF = \frac{1}{3}FD\]

Xét \[\Delta SOB\] có: E, F lần lượt là trung điểm của SO, OB \[ \Rightarrow EF\] là đường trung bình của \[\Delta SOB\]

\[ \Rightarrow EF{\rm{//}}SB \Rightarrow FK{\rm{//}}SB \Rightarrow \frac{{KS}}{{KD}} = \frac{{BF}}{{DF}} = \frac{1}{3}\]

Vậy, \[\frac{{KS}}{{KD}} = \frac{1}{3}\]

Lời giải

Đáp án D

Phương pháp giải:

Dựa vào các yếu tố song song xác định thiết diện.

Giải chi tiết:

Media VietJack

Qua G dựng EF song song AB (\[E \in SB,F \in SA\])

IJ là đường trung bình của hình thang ABCD \[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{IJ{\rm{//}}AB{\rm{//}}CD}\\{IJ = \frac{{AB + CD}}{2}}\end{array}} \right.\]

Ta có: \[\left\{ {\begin{array}{*{20}{l}}{IJ{\rm{//}}AB}\\{AB{\rm{//}}EF}\end{array}} \right. \Rightarrow IJ{\rm{//}}EF \Rightarrow I,J,E,F\] đồng phẳng

\[ \Rightarrow I,J,E,F,G\] đồng phẳng

\[ \Rightarrow \left( {GIJ} \right) \equiv \left( {IJEF} \right)\]

Thiết diện của \[\left( {GIJ} \right)\] với hình chóp là hình thang \[IJEF,{\mkern 1mu} \left( {IJ{\rm{//}}EF} \right)\]

Để thiết diện là hình bình hành thì \[IJ = EF \Leftrightarrow \frac{{AB + CD}}{2} = \frac{2}{3}AB\] (do \[\frac{{EF}}{{AB}} = \frac{{SE}}{{SB}} = \frac{{SG}}{{SM}} = \frac{2}{3}\])

\[ \Leftrightarrow 3AB + 3CD = 4AB \Leftrightarrow AB = 3CD\]

Câu 3

A. \[\sin x = 1\]
B. \[\cos x = - 1\]
C. \[\cos 2x = 1\]
D. \[\cos 2x = - 1\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} \right)\]
B. \[\left( { - \frac{{\sqrt 2 }}{2};1} \right)\]
C. \[\left[ { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} \right]\]
D. \[\left( { - \frac{{\sqrt 2 }}{2};1} \right]\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu d song song với \[\left( \alpha \right)\] thì trong mặt phẳng \[\left( \alpha \right)\] tồn tại đường thẳng d’ song song với d.
B. Nếu d song song với \[\left( \alpha \right)\] và đường thẳng \[d' \subset \left( \alpha \right)\] thì d’ song song với d.
C. Nếu d song song với \[d'\] và đường thẳng \[d' \subset \left( \alpha \right)\] thì d song song với (α).
D. Nếu d cắt mặt phẳng \[\left( \alpha \right)\] tại A và d’ là một đường thẳng bất kì trong \[\left( \alpha \right)\] thì dd’ hoặc cắt nhau hoặc chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP